Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Framework for the Competitive Analysis of Model Predictive Controllers

  • Conference paper
  • First Online:
Reachability Problems (RP 2023)

Abstract

This paper presents a framework for the competitive analysis of Model Predictive Controllers (MPC). Competitive analysis means evaluating the relative performance of the MPC as compared to other controllers. Concretely, we associate the MPC with a regret value which quantifies the maximal difference between its cost and the cost of any alternative controller from a given class. Then, the problem we tackle is that of determining whether the regret value is at most some given bound. Our contributions are both theoretical as well as practical: (1) We reduce the regret problem for controllers modeled as hybrid automata to the reachability problem for such automata. We propose a reachability-based framework to solve the regret problem. Concretely, (2) we propose a novel CEGAR-like algorithm to train a deep neural network (DNN) to clone the behavior of the MPC. Then, (3) we leverage existing reachability analysis tools capable of handling hybrid automata with DNNs to check bounds on the regret value of the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that if X contains more variables than just x, this function is not unique.

  2. 2.

    Our toolchain splits each interval into n equally large segments and adds all points in the resulting lattice. In our experiments, we use \(n = 4\).

  3. 3.

    All graphs and numbers can be reproduced using scripts from: https://doi.org/10.5281/zenodo.8255730.

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: keeton, K., Roscoe, T. (eds.) 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, 2–4 November 2016, pp. 265–283. USENIX Association (2016). https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

  2. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and translation tool for hybrid automaton models. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, pp. 128–133 (2015)

    Google Scholar 

  3. Bratko, I., Urbančič, T., Sammut, C.: Behavioural cloning: phenomena, results and problems. IFAC Proc. Vol. 28(21), 143–149 (1995)

    Article  Google Scholar 

  4. Chen, T., Chen, H.: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Netw. 6(4), 911–917 (1995)

    Article  Google Scholar 

  5. Chen, X., Sankaranarayanan, S.: Reachability analysis for cyber-physical systems: are we there yet? In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods, NFM 2022. LNCS, vol. 13260. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06773-0_6

  6. Clavière, A., Dutta, S., Sankaranarayanan, S.: Trajectory tracking control for robotic vehicles using counterexample guided training of neural networks. In: Benton, J., Lipovetzky, N., Onaindia, E., Smith, D.E., Srivastava, S. (eds.) Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, 11–15 July 2019, pp. 680–688. AAAI Press (2019). https://ojs.aaai.org/index.php/ICAPS/article/view/3555

  7. Fantoni, I., Lozano, R., Lozano, R.: Non-linear Control for Underactuated Mechanical Systems. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0177-2

  8. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  9. Gillis, J., Vandewal, B., Pipeleers, G., Swevers, J.: Effortless modeling of optimal control problems with rockit. In: 39th Benelux Meeting on Systems and Control, Elspeet, The Netherlands, 10 March 2020–12 March 2020 (2020)

    Google Scholar 

  10. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998). https://doi.org/10.1006/jcss.1998.1581

    Article  MathSciNet  MATH  Google Scholar 

  11. Hertneck, M., Köhler, J., Trimpe, S., Allgöwer, F.: Learning an approximate model predictive controller with guarantees. IEEE Control. Syst. Lett. 2(3), 543–548 (2018). https://doi.org/10.1109/LCSYS.2018.2843682

    Article  MathSciNet  Google Scholar 

  12. Hunter, P., Pérez, G.A., Raskin, J.: Reactive synthesis without regret. Acta Informatica 54(1), 3–39 (2017). https://doi.org/10.1007/s00236-016-0268-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig 2.0: verification of neural network controllers using Taylor model preconditioning. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 249–262. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_11

    Chapter  MATH  Google Scholar 

  14. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy compression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–10. IEEE (2016)

    Google Scholar 

  15. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

    Google Scholar 

  16. Muvvala, K., Amorese, P., Lahijanian, M.: Let’s collaborate: regret-based reactive synthesis for robotic manipulation. In: 2022 International Conference on Robotics and Automation, ICRA 2022, Philadelphia, PA, USA, 23–27 May 2022, pp. 4340–4346. IEEE (2022). https://doi.org/10.1109/ICRA46639.2022.9812298

  17. Ross, S., Bagnell, D.: Efficient reductions for imitation learning. In: Teh, Y.W., Titterington, D.M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2010. JMLR Proceedings, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, vol. 9, pp. 661–668. JMLR.org (2010). http://proceedings.mlr.press/v9/ross10a.html

  18. Ross, S., Gordon, G.J., Bagnell, D.: A reduction of imitation learning and structured prediction to no-regret online learning. In: Gordon, G.J., Dunson, D.B., Dudík, M. (eds.) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011. JMLR Proceedings, Fort Lauderdale, USA, 11–13 April 2011, vol. 15, pp. 627–635. JMLR.org (2011). http://proceedings.mlr.press/v15/ross11a/ross11a.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Krishnamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellis, S., Denil, J., Krishnamurthy, R., Leys, T., Pérez, G.A., Raha, R. (2023). A Framework for the Competitive Analysis of Model Predictive Controllers. In: Bournez, O., Formenti, E., Potapov, I. (eds) Reachability Problems. RP 2023. Lecture Notes in Computer Science, vol 14235. Springer, Cham. https://doi.org/10.1007/978-3-031-45286-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45286-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45285-7

  • Online ISBN: 978-3-031-45286-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics