Abstract
In this paper we propose a satisfaction measure for the theory of belief revision, which should be an alternative to the classical distance measure for defining revision operators. We present the idea of satisfaction measure as a monotonic condition, and characterize how it affects the revision operation by proving an extension of the AGM representation theorem (H. Katsuno and A. Mendelzon, 1991). A unique syntactical form, the disjunction of all prime implicants, is used to compile the belief bases. Then we develop a method to generate revision operators meet that monotonic condition. Lastly, we compare such an operator to four operators of other kinds with an example, then highlight its novelty and advantages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symbolic Logic 50(2), 510–530 (1985)
Borgida, A.: Language features for flexible handling of exceptions in information systems. ACM Trans. Database Syst. (TODS) 10(4), 565–603 (1985)
Borja-MacÃas, V., Pozos-Parra, P.: Model-based belief merging without distance measures. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–3 (2007). https://doi.org/10.1145/1329125.1329312
Chávez-Bosquez, O., Pozos-Parra, P., Ma, J.: Implementing \(\Delta _{ps}\) (ps-merge) belief merging operator for belief revision. Computación y Sistemas 21(3), 419–434 (2017)
Dalal, M.: Investigations into a theory of knowledge base revision: preliminary report. In: Proceedings of the 7th National Conference on Artificial Intelligence (AAAI-88), pp. 475–479 (1988)
Fermé, E., Hansson, S.O.: AGM 25 years: twenty-five years of research in belief change. J. Philos. Log. 40(2), 295–331 (2011)
Fine, B., Fine, K.: Social choice and individual ranking I. Rev. Econ. Stud. 41(3), 303–322 (1974)
Hamilton, A.G.: Logic for Mathematicians. Cambridge University Press, Cambridge (1988)
Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artif. Intell. 52(3), 263–294 (1991)
Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. J. Symb. Comput. 9(2), 185–206 (1990)
Konieczny, S., Pérez, R.P.: Merging information under constraints: a logical framework. J. Log. Comput. 12(5), 773–808 (2002)
Lehmann, D., Magidor, M., Schlechta, K.: Distance semantics for belief revision. J. Symbolic Logic 66(1), 295–317 (2001)
Liberatore, P., Schaerf, M.: Arbitration: a commutative operator for belief revision. In: Proceedings of the 2nd World Conference on the Fundamentals of Artificial Intelligence (WOCFAI 1995), pp. 217–228 (1995)
Lin, J., Mendelzon, A.O.: Knowledge base merging by majority. In: Pareschi, R., Fronhöfer, B. (eds.) Dynamic Worlds: From the Frame Problem to Knowledge Management, vol. 12, pp. 195–218. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1317-7_6
Marchi, J., Bittencourt, G., Perrussel, L.: Prime forms and minimal change in propositional belief bases. Ann. Math. Artif. Intell. 59(1), 1–45 (2010)
Ramesh, A., Becker, G., Murray, N.V.: CNF and DNF considered harmful for computing prime implicants/implicates. J. Autom. Reason. 18(3), 337–356 (1997)
Rodrigues, O., Gabbay, D., Russo, A.: Belief revision. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 16, pp. 1–114. Springer, Dordrecht (2011)
Schlechta, K.: Non-prioritized belief revision based on distances between models. Theoria 63(1–2), 34–53 (1997)
Tison, P.: Generalization of consensus theory and application to the minimization of boolean functions. IEEE Trans. Electron. Comput. EC-16(4), 446–456 (1967). https://doi.org/10.1109/PGEC.1967.264648
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, W. (2023). Belief Revision with Satisfaction Measure. In: Alechina, N., Herzig, A., Liang, F. (eds) Logic, Rationality, and Interaction. LORI 2023. Lecture Notes in Computer Science, vol 14329. Springer, Cham. https://doi.org/10.1007/978-3-031-45558-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-45558-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45557-5
Online ISBN: 978-3-031-45558-2
eBook Packages: Computer ScienceComputer Science (R0)