Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

BHSD: A 3D Multi-class Brain Hemorrhage Segmentation Dataset

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14348))

Included in the following conference series:

  • 1348 Accesses

Abstract

Intracranial hemorrhage (ICH) is a pathological condition characterized by bleeding inside the skull or brain, which can be attributed to various factors. Identifying, localizing and quantifying ICH has important clinical implications, in a bleed-dependent manner. While deep learning techniques are widely used in medical image segmentation and have been applied to the ICH segmentation task, existing public ICH datasets do not support the multi-class segmentation problem. To address this, we develop the Brain Hemorrhage Segmentation Dataset (BHSD), which provides a 3D multi-class ICH dataset containing 192 volumes with pixel-level annotations and 2200 volumes with slice-level annotations across five categories of ICH. To demonstrate the utility of the dataset, we formulate a series of supervised and semi-supervised ICH segmentation tasks. We provide experimental results with state-of-the-art models as reference benchmarks for further model developments and evaluations on this dataset. The dataset and checkpoint is available at https://github.com/White65534/BHSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auer, L.M., et al.: Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: a randomized study. J. Neurosurg. 70(4), 530–535 (1989)

    Article  Google Scholar 

  2. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  3. Chilamkurthy, S., et al.: Development and validation of deep learning algorithms for detection of critical findings in head CT scans (2018)

    Google Scholar 

  4. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  5. Flanders, A.E., et al.: Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiol. Artif. Intell. 2(3), e190211 (2020)

    Article  Google Scholar 

  6. Frontera, J.A., et al.: Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the modified fisher scale. Neurosurgery 59(1), 21–27 (2006)

    Google Scholar 

  7. Grønbæk, H., et al.: Liver cirrhosis, other liver diseases, and risk of hospitalisation for intracerebral haemorrhage: a danish population-based case-control study. BMC Gastroenterol. 8, 1–6 (2008)

    Article  Google Scholar 

  8. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) MICCAI 2021. LNCS, vol. 12962, pp. 272–284. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08999-2_22

    Chapter  Google Scholar 

  9. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  10. Hemphill, J.C., III., et al.: Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke 46(7), 2032–2060 (2015)

    Article  Google Scholar 

  11. Howard, G., et al.: Risk factors for intracerebral hemorrhage: the reasons for geographic and racial differences in stroke (regards) study. Stroke 44(5), 1282–1287 (2013)

    Article  Google Scholar 

  12. Hssayeni, M., Croock, M., Salman, A., Al-khafaji, H., Yahya, Z., Ghoraani, B.: Computed tomography images for intracranial hemorrhage detection and segmentation. Intracranial hemorrhage segmentation using a deep convolutional model. Data 5(1), 14 (2020)

    Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Larobina, M., Murino, L.: Medical image file formats. J. Digit. Imaging 27, 200–206 (2014)

    Article  Google Scholar 

  15. Lee, H., Kim, M., Do, S.: Practical window setting optimization for medical image deep learning. arXiv preprint arXiv:1812.00572 (2018)

  16. Li, X., et al.: The state-of-the-art 3D anisotropic intracranial hemorrhage segmentation on non-contrast head CT: the instance challenge. arXiv preprint arXiv:2301.03281 (2023)

  17. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  18. McCarron, M.O., Nicoll, J.A., Ironside, J.W., Love, S., Alberts, M.J., Bone, I.: Cerebral amyloid angiopathy-related hemorrhage: interaction of apoe \(\varepsilon \)2 with putative clinical risk factors. Stroke 30(8), 1643–1646 (1999)

    Article  Google Scholar 

  19. Reis, E.P., et al.: Brain hemorrhage extended (BHX): bounding box extrapolation from thick to thin slice CT images. PhysioNe 101(23), e215-20 (2020)

    Google Scholar 

  20. Steiner, T., et al.: European stroke organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. Int. J. Stroke 9(7), 840–855 (2014)

    Article  Google Scholar 

  21. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  23. Verma, V., et al.: Interpolation consistency training for semi-supervised learning. Neural Netw. 145, 90–106 (2022)

    Article  Google Scholar 

  24. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  25. Wang, X., et al.: A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans. NeuroImage Clin. 32, 102785 (2021)

    Google Scholar 

  26. Xie, Y., Zhang, J., Shen, C., Xia, Y.: CoTr: efficiently bridging CNN and transformer for 3D medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 171–180. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_16

    Chapter  Google Scholar 

  27. Yushkevich, P.A., Gerig, G.: ITK-SNAP: an intractive medical image segmentation tool to meet the need for expert-guided segmentation of complex medical images. IEEE Pulse 8(4), 54–57 (2017)

    Article  Google Scholar 

  28. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh-Son To .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1274 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, B. et al. (2024). BHSD: A 3D Multi-class Brain Hemorrhage Segmentation Dataset. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics