Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Threshold RanSaC Algorithms for Pose Estimation Tasks

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022)

Abstract

When faced with data corrupted by both noise and outliers robust estimation algorithms like RanSaC are used, especially in the field of Multi-View Stereo (MVS) or Structure-from-Motion (SfM). To find the best model fitting the data, from numerous minimal samples it evaluates models and rates them according to their number of inliers. The classification as inlier depends on a user-set threshold that should be tailored to the noise level of the data. This requires the knowledge of this level, which is rarely available. The few existing adaptive threshold algorithms solve this problem by estimating the value of the threshold while computing the best model. However, it is hard to obtain ground-truth for MVS and SfM tasks and usually test datasets are based on the output on some state of the art algorithm, which prevents the objective evaluation of new algorithms. We propose a new method to generate artificial datasets based on true data to get realistic and measurable results. We use this method to benchmark different automatic RanSaC algorithms and find out how they compare to each other and identify each algorithm’s strengths and weaknesses. This study reveals uses cases for each method and the possible tradeoffs between performance and execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Multi-H, kusvod2 and homogr can be found at http://cmp.felk.cvut.cz/data/geometry2view/.

References

  1. Barath, D., Matas, J., Noskova, J.: MAGSAC: marginalizing sample consensus. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10197–10205 (2019)

    Google Scholar 

  2. Barath, D., Noskova, J., Ivashechkin, M., Matas, J.: MAGSAC++, a fast, reliable and accurate robust estimator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1304–1312 (2020)

    Google Scholar 

  3. Choi, J., Medioni, G.: StaRSaC: stable random sample consensus for parameter estimation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 675–682 (2009). https://doi.org/10.1109/CVPR.2009.5206678

  4. Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. In: Proceedings of the British Machine Vision Conference (BMVC) (2009)

    Google Scholar 

  5. Cohen, A., Zach, C.: The likelihood-ratio test and efficient robust estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2282–2290 (2015). https://doi.org/10.1109/ICCV.2015.263

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  7. Dehais, J., Anthimopoulos, M., Shevchik, S., Mougiakakou, S.: Two-view 3D reconstruction for food volume estimation. IEEE Trans. Multimedia 19(5), 1090–1099 (2017). https://doi.org/10.1109/TMM.2016.2642792

    Article  Google Scholar 

  8. Fan, L., Pylvänäinen, T.: Robust scale estimation from ensemble inlier sets for random sample consensus methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 182–195. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_14

    Chapter  Google Scholar 

  9. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  11. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN 978-0521540513

    Google Scholar 

  12. Isack, H., Boykov, Y.: Energy-based geometric multi-model fitting. Int. J. Comput. Vis. (IJCV) 97(2), 123–147 (2012). https://doi.org/10.1007/s11263-011-0474-7

    Article  MATH  Google Scholar 

  13. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PNP problem. Int. J. Comput. Vision 81(2), 155–166 (2009)

    Article  Google Scholar 

  14. Leroy, A.M., Rousseeuw, P.J.: Robust Regression and Outlier Detection. Wiley Series in Probability and Mathematical Statistics (1987)

    Google Scholar 

  15. Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2041–2050 (2018)

    Google Scholar 

  16. Li, Z., Snavely, N.: Megadepth: learning single-view depth prediction from internet photos. In: Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  17. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  18. Magri, L., Fusiello, A.: T-linkage: a continuous relaxation of J-linkage for multi-model fitting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3954–3961 (2014). https://doi.org/10.1109/CVPR.2014.505

  19. Magri, L., Fusiello, A.: Robust multiple model fitting with preference analysis and low-rank approximation. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 20.1–20.12 (2015). https://doi.org/10.5244/C.29.20

  20. Miller, J.V., Stewart, C.V.: MUSE: robust surface fitting using unbiased scale estimates. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 300–306 (1996). https://doi.org/10.1109/CVPR.1996.517089

  21. Moisan, L., Moulon, P., Monasse, P.: Automatic homographic registration of a pair of images, with a contrario elimination of outliers. Image Process. On Line (IPOL) 2, 56–73 (2012)

    Article  Google Scholar 

  22. Moisan, L., Moulon, P., Monasse, P.: Fundamental matrix of a stereo pair, with a contrario elimination of outliers. Image Process. On Line (IPOL) 6, 89–113 (2016)

    Article  MathSciNet  Google Scholar 

  23. Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int. J. Comput. Vision (IJCV) 57(3), 201–218 (2004)

    Article  Google Scholar 

  24. Moulon, P.: AC-RanSaC implementation (2012). https://github.com/pmoulon/ IPOL_AC_RANSAC. Accessed 22 Jan 2021

  25. Moulon, P., Monasse, P., Perrot, R., Marlet, R.: OpenMVG: open multiple view geometry. In: Kerautret, B., Colom, M., Monasse, P. (eds.) RRPR 2016. LNCS, vol. 10214, pp. 60–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56414-2_5

    Chapter  Google Scholar 

  26. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 26(6), 756–770 (2004)

    Article  Google Scholar 

  27. Rabin, J., Delon, J., Gousseau, Y., Moisan, L.: MAC-RANSAC: a robust algorithm for the recognition of multiple objects. In: Proceedings of the Fifth International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), pp. 51–58 (2010)

    Google Scholar 

  28. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35(8), 2022–2038 (2012)

    Article  Google Scholar 

  29. Riu, C., Nozick, V., Monasse, P.: Automatic ransac by likelihood maximization. Image Process. On Line 12, 27–49 (2022)

    Article  MathSciNet  Google Scholar 

  30. Riu, C., Nozick, V., Monasse, P., Dehais, J.: Classification performance of ransac algorithms with automatic threshold estimation. In: 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022), vol. 5, pp. 723–733. Scitepress (2022)

    Google Scholar 

  31. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104–4113 (2016)

    Google Scholar 

  32. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2930–2937 (2013)

    Google Scholar 

  33. Toldo, R., Fusiello, A.: Image-consistent patches from unstructured points with J-linkage. Image Vis. Comput. 31, 756–770 (2013)

    Article  Google Scholar 

  34. Wang, H., Suter, D.: Robust adaptive-scale parametric model estimation for computer vision. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 26(11), 1459–1474 (2004). https://doi.org/10.1109/TPAMI.2004.109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Riu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riu, C., Nozick, V., Monasse, P. (2023). Automatic Threshold RanSaC Algorithms for Pose Estimation Tasks. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2022. Communications in Computer and Information Science, vol 1815. Springer, Cham. https://doi.org/10.1007/978-3-031-45725-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45725-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45724-1

  • Online ISBN: 978-3-031-45725-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics