Abstract
When faced with data corrupted by both noise and outliers robust estimation algorithms like RanSaC are used, especially in the field of Multi-View Stereo (MVS) or Structure-from-Motion (SfM). To find the best model fitting the data, from numerous minimal samples it evaluates models and rates them according to their number of inliers. The classification as inlier depends on a user-set threshold that should be tailored to the noise level of the data. This requires the knowledge of this level, which is rarely available. The few existing adaptive threshold algorithms solve this problem by estimating the value of the threshold while computing the best model. However, it is hard to obtain ground-truth for MVS and SfM tasks and usually test datasets are based on the output on some state of the art algorithm, which prevents the objective evaluation of new algorithms. We propose a new method to generate artificial datasets based on true data to get realistic and measurable results. We use this method to benchmark different automatic RanSaC algorithms and find out how they compare to each other and identify each algorithm’s strengths and weaknesses. This study reveals uses cases for each method and the possible tradeoffs between performance and execution time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Multi-H, kusvod2 and homogr can be found at http://cmp.felk.cvut.cz/data/geometry2view/.
References
Barath, D., Matas, J., Noskova, J.: MAGSAC: marginalizing sample consensus. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10197–10205 (2019)
Barath, D., Noskova, J., Ivashechkin, M., Matas, J.: MAGSAC++, a fast, reliable and accurate robust estimator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1304–1312 (2020)
Choi, J., Medioni, G.: StaRSaC: stable random sample consensus for parameter estimation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 675–682 (2009). https://doi.org/10.1109/CVPR.2009.5206678
Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. In: Proceedings of the British Machine Vision Conference (BMVC) (2009)
Cohen, A., Zach, C.: The likelihood-ratio test and efficient robust estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2282–2290 (2015). https://doi.org/10.1109/ICCV.2015.263
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Dehais, J., Anthimopoulos, M., Shevchik, S., Mougiakakou, S.: Two-view 3D reconstruction for food volume estimation. IEEE Trans. Multimedia 19(5), 1090–1099 (2017). https://doi.org/10.1109/TMM.2016.2642792
Fan, L., Pylvänäinen, T.: Robust scale estimation from ensemble inlier sets for random sample consensus methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 182–195. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_14
Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN 978-0521540513
Isack, H., Boykov, Y.: Energy-based geometric multi-model fitting. Int. J. Comput. Vis. (IJCV) 97(2), 123–147 (2012). https://doi.org/10.1007/s11263-011-0474-7
Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PNP problem. Int. J. Comput. Vision 81(2), 155–166 (2009)
Leroy, A.M., Rousseeuw, P.J.: Robust Regression and Outlier Detection. Wiley Series in Probability and Mathematical Statistics (1987)
Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2041–2050 (2018)
Li, Z., Snavely, N.: Megadepth: learning single-view depth prediction from internet photos. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)
Magri, L., Fusiello, A.: T-linkage: a continuous relaxation of J-linkage for multi-model fitting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3954–3961 (2014). https://doi.org/10.1109/CVPR.2014.505
Magri, L., Fusiello, A.: Robust multiple model fitting with preference analysis and low-rank approximation. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 20.1–20.12 (2015). https://doi.org/10.5244/C.29.20
Miller, J.V., Stewart, C.V.: MUSE: robust surface fitting using unbiased scale estimates. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 300–306 (1996). https://doi.org/10.1109/CVPR.1996.517089
Moisan, L., Moulon, P., Monasse, P.: Automatic homographic registration of a pair of images, with a contrario elimination of outliers. Image Process. On Line (IPOL) 2, 56–73 (2012)
Moisan, L., Moulon, P., Monasse, P.: Fundamental matrix of a stereo pair, with a contrario elimination of outliers. Image Process. On Line (IPOL) 6, 89–113 (2016)
Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int. J. Comput. Vision (IJCV) 57(3), 201–218 (2004)
Moulon, P.: AC-RanSaC implementation (2012). https://github.com/pmoulon/ IPOL_AC_RANSAC. Accessed 22 Jan 2021
Moulon, P., Monasse, P., Perrot, R., Marlet, R.: OpenMVG: open multiple view geometry. In: Kerautret, B., Colom, M., Monasse, P. (eds.) RRPR 2016. LNCS, vol. 10214, pp. 60–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56414-2_5
Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 26(6), 756–770 (2004)
Rabin, J., Delon, J., Gousseau, Y., Moisan, L.: MAC-RANSAC: a robust algorithm for the recognition of multiple objects. In: Proceedings of the Fifth International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), pp. 51–58 (2010)
Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35(8), 2022–2038 (2012)
Riu, C., Nozick, V., Monasse, P.: Automatic ransac by likelihood maximization. Image Process. On Line 12, 27–49 (2022)
Riu, C., Nozick, V., Monasse, P., Dehais, J.: Classification performance of ransac algorithms with automatic threshold estimation. In: 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022), vol. 5, pp. 723–733. Scitepress (2022)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104–4113 (2016)
Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2930–2937 (2013)
Toldo, R., Fusiello, A.: Image-consistent patches from unstructured points with J-linkage. Image Vis. Comput. 31, 756–770 (2013)
Wang, H., Suter, D.: Robust adaptive-scale parametric model estimation for computer vision. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 26(11), 1459–1474 (2004). https://doi.org/10.1109/TPAMI.2004.109
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Riu, C., Nozick, V., Monasse, P. (2023). Automatic Threshold RanSaC Algorithms for Pose Estimation Tasks. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2022. Communications in Computer and Information Science, vol 1815. Springer, Cham. https://doi.org/10.1007/978-3-031-45725-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-45725-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45724-1
Online ISBN: 978-3-031-45725-8
eBook Packages: Computer ScienceComputer Science (R0)