Abstract
For brain tumour segmentation, deep learning models can achieve human expert-level performance given a large amount of data and pixel-level annotations. However, the expensive exercise of obtaining pixel-level annotations for large amounts of data is not always feasible, and performance is often heavily reduced in a low-annotated data regime. To tackle this challenge, we adapt a mixed supervision framework, vMFNet, to learn robust compositional representations using unsupervised learning and weak supervision alongside non-exhaustive pixel-level pathology labels. In particular, we use the BraTS dataset to simulate a collection of 2-point expert pathology annotations indicating the top and bottom slice of the tumour (or tumour sub-regions: peritumoural edema, GD-enhancing tumour, and the necrotic/non-enhancing tumour) in each MRI volume, from which weak image-level labels that indicate the presence or absence of the tumour (or the tumour sub-regions) in the image are constructed. Then, vMFNet models the encoded image features with von-Mises-Fisher (vMF) distributions, via learnable and compositional vMF kernels which capture information about structures in the images. We show that good tumour segmentation performance can be achieved with a large amount of weakly labelled data but only a small amount of fully-annotated data. Interestingly, emergent learning of anatomical structures occurs in the compositional representation even given only supervision relating to pathology (tumour).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The code for vMFNet is available at https://github.com/vios-s/vMFNet.
References
Alexander, R.G., Waite, S., Macknik, S.L., Martinez-Conde, S.: What do radiologists look for? Advances and limitations of perceptual learning in radiologic search. J. Vis. 20(10), 17–17 (2020)
Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 4128 (2022)
Arad Hudson, D., Zitnick, L.: Compositional transformers for scene generation. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2021)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BraTS challenge. arXiv preprint arXiv:1811.02629 (2018)
Chartsias, A., et al.: Disentangled representation learning in cardiac image analysis. Med. Image Anal. 58, 101535 (2019)
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)
Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the International Conference on Pattern Recognition (ICPR), vol. 1, pp. 566–568. IEEE (1994)
Huynh, D., Elhamifar, E.: Compositional zero-shot learning via fine-grained dense feature composition. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 19849–19860 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)
Kortylewski, A., He, J., Liu, Q., Yuille, A.L.: Compositional convolutional neural networks: a deep architecture with innate robustness to partial occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8940–8949 (2020)
Kortylewski, A., Liu, Q., Wang, H., Zhang, Z., Yuille, A.: Combining compositional models and deep networks for robust object classification under occlusion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (CVPR), pp. 1333–1341 (2020)
Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)
Liu, N., Li, S., Du, Y., Tenenbaum, J., Torralba, A.: Learning to compose visual relations. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), vol. 34 (2021)
Liu, X., Sanchez, P., Thermos, S., O’Neil, A.Q., Tsaftaris, S.A.: Compositionally equivariant representation learning. arXiv preprint arXiv:2306.07783 (2023)
Liu, X., Thermos, S., Chartsias, A., O’Neil, A., Tsaftaris, S.A.: Disentangled representations for domain-generalized cardiac segmentation. In: Proc. International Workshop on Statistical Atlases and Computational Models of the Heart (STACOM). pp. 187–195 (2020)
Liu, X., Thermos, S., O’Neil, A., Tsaftaris, S.A.: Semi-supervised meta-learning with disentanglement for domain-generalised medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_29
Liu, X., Thermos, S., Sanchez, P., O’Neil, A.Q., Tsaftaris, S.A.: vMFNet: compositionality meets domain-generalised segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 704–714. Springer, Cham (2022)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Milletari, F., Navab, N., Ahmadi, S.A.: VNet: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571. IEEE (2016)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), vol. 32 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Singh, K.K., Ojha, U., Lee, Y.J.: Finegan: unsupervised hierarchical disentanglement for fine-grained object generation and discovery. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6490–6499 (2019)
Thermos, S., Liu, X., O’Neil, A., Tsaftaris, S.A.: Controllable cardiac synthesis via disentangled anatomy arithmetic. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 160–170. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_15
Tokmakov, P., Wang, Y.X., Hebert, M.: Learning compositional representations for few-shot recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6372–6381 (2019)
Yuan, X., Kortylewski, A., et al.: Robust instance segmentation through reasoning about multi-object occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11141–11150 (2021)
Yuille, A.L., Liu, C.: Deep nets: what have they ever done for vision? Int. J. Comput. Vision 129, 781–802 (2021)
Zhang, Y., Kortylewski, A., Liu, Q., et al.: A light-weight interpretable compositionalnetwork for nuclei detection and weakly-supervised segmentation. arXiv preprint arXiv:2110.13846 (2021)
Acknowledgements
S.A. Tsaftaris acknowledges the support of Canon Medical and the Royal Academy of Engineering and the Research Chairs and Senior Research Fellowships scheme (grant RCSRF1819\(\backslash \)8\(\backslash \)25). Many thanks to Patrick Schrempf and Joseph Boyle for their helpful review comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, X., Kascenas, A., Watson, H., Tsaftaris, S.A., O’Neil, A.Q. (2024). Compositional Representation Learning for Brain Tumour Segmentation. In: Koch, L., et al. Domain Adaptation and Representation Transfer. DART 2023. Lecture Notes in Computer Science, vol 14293. Springer, Cham. https://doi.org/10.1007/978-3-031-45857-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-45857-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45856-9
Online ISBN: 978-3-031-45857-6
eBook Packages: Computer ScienceComputer Science (R0)