Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Discovery of Workflow Patterns - A Comparison of Process Discovery Algorithms

  • Conference paper
  • First Online:
Cooperative Information Systems (CoopIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14353))

Included in the following conference series:

Abstract

Process mining provides a set of techniques and algorithms to analyze, support, and improve business processes based on process execution data. Process discovery aims at deducing a representative process model of real-world execution. So far, process discovery algorithms have been mainly compared regarding their output quality but not yet with regard to their functional capabilities. The well-established workflow control flow patterns imperatively describe process behavior, originally used to compare modeling languages, but to date, not to compare discovery algorithms. In this work, we analyze a representative set of process discovery algorithms with regard to their coverage of 23 control flow patterns. For this purpose, we implemented each workflow pattern as an executable colored Petri net, simulated it, and ran various discovery algorithms on the obtained event log. A comparison of the results shows that the discovery algorithms mainly cover basic control flow patterns and iterative structures, while multi-instance, state-base, and cancellation patterns are only partially covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cpntools.org/.

  2. 2.

    http://www.promtools.org/promimport/.

  3. 3.

    https://promtools.org/prom-6-12/.

  4. 4.

    https://figshare.com/s/40a65e1fdab01c58e3d1.

  5. 5.

    Note the distinction here between process events and log events.

References

  1. CPN tools - a tool for editing, simulating, and analyzing colored petri nets. https://cpntools.org/

  2. Augusto, R.A., Conforti, M.D., Rosa, M.L.: Research lab split miner. https://apromore.com/research-lab/

  3. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

    Book  MATH  Google Scholar 

  4. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

    Article  Google Scholar 

  5. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Cham (1998). https://doi.org/10.1007/BFb0101003

    Chapter  Google Scholar 

  6. Alves De Medeiros, A., Günther, C.: Process mining: using CPN tools to create test logs for mining algorithms, pp. 177–190. DAIMI, University of Aarhus (2005). 6th Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools (CPN 2005), Aarhus, Denmark, CPN 2005

    Google Scholar 

  7. Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

    Article  Google Scholar 

  8. vanden Broucke, S.K., De Weerdt, J.: Fodina: robust and flexible process discovery. http://www.processmining.be/fodina/

  9. vanden Broucke, S.K.L.M., Weerdt, J.D.: Fodina: a robust and flexible heuristic process discovery technique. Decis. Support Syst. 100, 109–118 (2017)

    Google Scholar 

  10. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process discovery: the importance of fitness, precision, generalization and simplicity. Int. J. Cooperative Inf. Syst. 23(1), 1440001 (2014)

    Google Scholar 

  11. Cardoso, J.: Business process quality metrics: log-based complexity of workflow patterns. In: Meersman, R., Tari, Z. (eds.) OTM 2007. LNCS, vol. 4803, pp. 427–434. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76848-7_30

    Chapter  Google Scholar 

  12. Conforti, R., Dumas, M., García-Bañuelos, L., Rosa, M.L.: BPMN miner: automated discovery of BPMN process models with hierarchical structure. Inf. Syst. 56, 284–303 (2016)

    Article  Google Scholar 

  13. van Dongen, B.F., de Medeiros, A.K.A., Wen, L.: Process mining: overview and outlook of petri net discovery algorithms. Trans. Petri Nets Other Model. Concurr. 2, 225–242 (2009)

    Article  Google Scholar 

  14. Gaaloul, W., Baïna, K., Godart, C.: Towards mining structural workflow patterns. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 24–33. Springer, Heidelberg (2005). https://doi.org/10.1007/11546924_3

    Chapter  Google Scholar 

  15. Gaaloul, W., Baïna, K., Godart, C.: A bottom-up workflow mining approach for workflow applications analysis. In: Lee, J., Shim, J., Lee, S., Bussler, C., Shim, S. (eds.) DEECS 2006. LNCS, vol. 4055, pp. 182–197. Springer, Heidelberg (2006). https://doi.org/10.1007/11780397_15

    Chapter  Google Scholar 

  16. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_24

    Chapter  Google Scholar 

  17. Hobeck, R., Pufahl, L., Weber, I.: Process mining on curriculum-based study data: a case study at a German university. In: Montali, M., Senderovich, A., Weidlich, M. (eds.) ICPM 2022. LNBIP, vol. 468, pp. 577–589. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-27815-0_42

    Chapter  Google Scholar 

  18. Jensen, K., Kristensen, L.M.: Colored petri nets: a graphical language for formal modeling and validation of concurrent systems. CACM 58(6), 61–70 (2015)

    Article  Google Scholar 

  19. Leemans, M., van der Aalst, W.M.P., van den Brand, M.G.J.: Recursion aware modeling and discovery for hierarchical software event log analysis. In: Oliveto, R., Penta, M.D., Shepherd, D.C. (eds.) SANER 2018, Campobasso, Italy, 20–23 March 2018, pp. 185–196. IEEE Computer Society (2018)

    Google Scholar 

  20. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6

    Chapter  Google Scholar 

  21. Leemans, S.J.J., Goel, K., van Zelst, S.J.: Using multi-level information in hierarchical process mining: balancing behavioural quality and model complexity. In: van Dongen, B.F., Montali, M., Wynn, M.T. (eds.) ICPM 2020, Padua, Italy, 4–9 October 2020, pp. 137–144. IEEE (2020)

    Google Scholar 

  22. Russell, N., Ter Hofstede, A.H., Van Der Aalst, W.M., Mulyar, N.: Workflow control-flow patterns: a revised view. BPM Center Report BPM-06-22, BPMcenter.org (2006)

    Google Scholar 

  23. Sarno, R., Sari, P.L.I., Ginardi, H., Sunaryono, D., Mukhlash, I.: Decision mining for multi choice workflow patterns. In: 2013 International Conference on Computer, Control, Informatics and Its Applications, IC3INA 2013, Jakarta, Indonesia, 19–21 November 2013, pp. 337–342. IEEE (2013)

    Google Scholar 

  24. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Incremental discovery of hierarchical process models. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds.) RCIS 2020. LNBIP, vol. 385, pp. 417–433. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50316-1_25

    Chapter  Google Scholar 

  25. S.E.R.G. at University of Tartu: the BPM Discipline at Queensland University of Technology: Bpmn miner 2.0 - a tool for automated discovery of structured BPMN models from event logs. https://sep.cs.ut.ee/Main/BPMNMiner/

  26. Van Der Aalst, W.: Process Mining: Data Science in Action, vol. 2. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  27. Weber, I., Farshchi, M., Mendling, J., Schneider, J.: Mining processes with multi-instantiation. In: Wainwright, R.L., Corchado, J.M., Bechini, A., Hong, J. (eds.) Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, 13–17 April 2015, pp. 1231–1237. ACM (2015)

    Google Scholar 

  28. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, CIDM, 11–15 April 2011, Paris, France, pp. 310–317. IEEE (2011)

    Google Scholar 

  29. Weske, M.: Business Process Management - Concepts, Languages, Architectures, 3rd edn. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59432-2

    Book  Google Scholar 

  30. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Discovering workflow nets using integer linear programming. Computing 100(5), 529–556 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Andree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andree, K., Hoang, M., Dannenberg, F., Weber, I., Pufahl, L. (2024). Discovery of Workflow Patterns - A Comparison of Process Discovery Algorithms. In: Sellami, M., Vidal, ME., van Dongen, B., Gaaloul, W., Panetto, H. (eds) Cooperative Information Systems. CoopIS 2023. Lecture Notes in Computer Science, vol 14353. Springer, Cham. https://doi.org/10.1007/978-3-031-46846-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46846-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46845-2

  • Online ISBN: 978-3-031-46846-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics