Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Resource-Driven Process Manipulation: Modeling Concepts and Valid Allocations

  • Conference paper
  • First Online:
Cooperative Information Systems (CoopIS 2023)

Abstract

In situations of scarce resource availability, flexibility on which resources execute which tasks is key to process and system performance. Tightly coupled control flow and resource modeling hampers flexible resource allocation. Hence, in this work, we propose resource-driven process manipulation (RDPM) to enable the separation between the business and resource requirements for a process. RDPM enables process modelers to specify resource-specific requirements for the control flow as part of resource profiles, e.g., a machine (resource) requires configuration (task) before execution. Moreover, the resource is promoted to a first-class citizen in process-aware information systems and enabled to impact the execution. The basic concepts of RDPM are defined and an algorithm is provided to find valid resource allocations for a task. The approach is prototypically implemented and compared to existing modeling approaches w.r.t. complexity for the modeler and process participant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cpee.org/.

  2. 2.

    https://github.com/Schlixmann/RDPM.

References

  1. van der Aalst, W.M.P.: Business process management: A comprehensive survey 2013, pp. 1–37 (2013). https://doi.org/10.1155/2013/507984

  2. van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural patterns for soundness of business process models. In: Enterprise Distributed Object Computing Conference, pp. 116–128 (2006). https://doi.org/10.1109/EDOC.2006.56

  3. Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing with change in process choreographies: design and implementation of propagation algorithms. Inf. Syst. 49, 1–24 (2015). https://doi.org/10.1016/j.is.2014.10.004

    Article  Google Scholar 

  4. Gröner, G., Boskovic, M., Parreiras, F.S., Gasevic, D.: Modeling and validation of business process families. Inf. Syst. 38(5), 709–726 (2013). https://doi.org/10.1016/j.is.2012.11.010

    Article  Google Scholar 

  5. Hillier, F., Lieberman, G.: Introduction to Operations Research. McGraw-Hill Education (2021)

    Google Scholar 

  6. Hsu, H., Hsiung, Y., Chen, Y., Wu, M.: A GA methodology for the scheduling of yarn-dyed textile production. Expert Syst. Appl. 36(10), 12095–12103 (2009). https://doi.org/10.1016/j.eswa.2009.04.075

    Article  Google Scholar 

  7. Ihde, S., Pufahl, L., Völker, M., Goel, A., Weske, M.: A framework for modeling and executing task-specific resource allocations in business processes. Computing 104(11), 2405–2429 (2022). https://doi.org/10.1007/s00607-022-01093-2

    Article  Google Scholar 

  8. KĂ¼nzle, V., Weber, B., Reichert, M.: Object-aware business processes: fundamental requirements and their support in existing approaches. Int. J. Inf. Syst. Model. Des. 2(2), 19–46 (2011). https://doi.org/10.4018/jismd.2011040102

    Article  Google Scholar 

  9. Leitner, M., Rinderle-Ma, S.: A systematic review on security in process-aware information systems - constitution, challenges, and future directions. Inf. Softw. Techn. 56(3), 273–293 (2014). https://doi.org/10.1016/j.infsof.2013.12.004

    Article  Google Scholar 

  10. Mangler, J., Rinderle-Ma, S.: Cloud process execution engine: architecture and interfaces. https://doi.org/10.48550/arXiv.2208.12214

  11. Munoz-Gama, J., Carmona, J., Van Der Aalst, W.M.P.: Conformance checking in the large: partitioning and topology. In: Business Process Management, pp. 130–145 (2013). https://doi.org/10.1007/978-3-642-40176-3_11

  12. Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Mining resource profiles from event logs. ACM Trans. Manag. Inf. Syst. 8(1), 1:1-1:30 (2017). https://doi.org/10.1145/3041218

    Article  Google Scholar 

  13. Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process forecasting: towards proactive business process management. In: Business Process Management, pp. 496–512 (2018). https://doi.org/10.1007/978-3-319-98648-7_29

  14. Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of change patterns in process-aware information systems. In: Conceptual Modeling, pp. 279–293 (2008). https://doi.org/10.1007/978-3-540-87877-3_21

  15. Rosa, M.L., Aalst, W.M.P.V.D., Dumas, M., Milani, F.P.: Business process variability modeling: a survey. ACM Comput. Surv. 50(1), 2:1–2:45 (2017). https://doi.org/10.1145/3041957

  16. Turetken, O., Dikici, A., Vanderfeesten, I., Rompen, T., Demirors, O.: The influence of using collapsed sub-processes and groups on the understandability of business process models. Bus. Inf. Syst. Eng. 62(2), 121–141 (2019). https://doi.org/10.1007/s12599-019-00577-4

    Article  Google Scholar 

  17. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng. 68(9), 793–818 (2009). https://doi.org/10.1016/j.datak.2009.02.015

    Article  Google Scholar 

  18. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features - enhancing flexibility in process-aware information systems. Data Knowl. Eng. 66(3), 438–466 (2008). https://doi.org/10.1016/j.datak.2008.05.001

    Article  Google Scholar 

  19. Zhao, W., Yang, L., Liu, H., Wu, R.: The optimization of resource allocation based on process mining. In: Advanced Intelligent Computing Theories and Applications ICIC, pp. 341–353 (2015). https://doi.org/10.1007/978-3-319-22053-6_38

Download references

Acknowledgement

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project number 277991500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Schumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schumann, F., Rinderle-Ma, S. (2024). Resource-Driven Process Manipulation: Modeling Concepts and Valid Allocations. In: Sellami, M., Vidal, ME., van Dongen, B., Gaaloul, W., Panetto, H. (eds) Cooperative Information Systems. CoopIS 2023. Lecture Notes in Computer Science, vol 14353. Springer, Cham. https://doi.org/10.1007/978-3-031-46846-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46846-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46845-2

  • Online ISBN: 978-3-031-46846-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics