Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Actively Variable Transmission Robotic Leg

  • Conference paper
  • First Online:
Synergetic Cooperation between Robots and Humans (CLAWAR 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 811))

Included in the following conference series:

Abstract

Quadrupedal robots consume large amounts of energy while walking or standing, limiting their range and operation time. Moreover, their design involves multiple trade-offs between conflicting requirements, reducing their flexibility and suitability for certain applications despite their advantages in rough and unknown environments. One of the root causes of this situation is the mismatch between the limited capabilities of the actuators and the wide range of requirements for these robots. This work introduces an actively variable transmission design intended to adjust the robot’s characteristics according to its current mission requirements, resulting in more efficient power usage and longer operational times. We designed and built a single-leg prototype and tested it. Experimental results show a decrease of up to 50% in the power consumption of the knee actuator, confirming the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate, A., Hurst, J.W., Hatton, R.L.: Mechanical antagonism in legged robots. In: Robotics: Science and Systems, vol. 6., Ann Arbor, MI (2016)

    Google Scholar 

  2. Badri-Spröwitz, A., Aghamaleki Sarvestani, A., Sitti, M., Daley, M.A.: Birdbot achieves energy-efficient gait with minimal control using avian-inspired leg clutching. Sci. Robot. 7(64) (2022). eabg4055

    Google Scholar 

  3. Bjelonic, M., Sankar, P.K., Bellicoso, C.D., Vallery, H., Hutter, M.: Rolling in the deep-hybrid locomotion for wheeled-legged robots using online trajectory optimization. IEEE Robot. Autom. Lett. 5(2), 3626–3633 (2020)

    Article  Google Scholar 

  4. Bouman, A., Ginting, M.F., Alatur, N., Palieri, M., Fan, D.D., Touma, T., Pailevanian, T., Kim, S.K., Otsu, K., Burdick, J., et al.: Autonomous spot: Long-range autonomous exploration of extreme environments with legged locomotion. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2518–2525. IEEE (2020)

    Google Scholar 

  5. Elftman, H.: The function of muscles in locomotion. Am. J. Physiol.-Legacy Content 125(2), 357–366 (1939)

    Article  Google Scholar 

  6. Flynn, L., Geeroms, J., Jimenez-Fabian, R., Vanderborght, B., Vitiello, N., Lefeber, D.: Ankle-knee prosthesis with active ankle and energy transfer: development of the cyberlegs alpha-prosthesis. Robot. Autonom Syst. 73, 4–15 (2015). Wearable Robotics

    Google Scholar 

  7. Hirose, S., Arikawa, K.: Coupled and decoupled actuation of robotic mechanisms. Adv. Robot. 15(2), 125–138 (2001)

    Article  Google Scholar 

  8. Hwangbo, J., Tsounis, V., Kolvenbach, H., Hutter, M.: Cable-driven actuation for highly dynamic robotic systems. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8543–8550 (2018)

    Google Scholar 

  9. Kamikawa, Y., Kinoshita, M., Takasugi, N., Sugimoto, K., Kai, T., Kito, T., Sakamoto, A., Nagasaka, K., Kawanami, Y.: Tachyon: design and control of high payload, robust, and dynamic quadruped robot with series-parallel elastic actuators. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 894–901. IEEE (2021)

    Google Scholar 

  10. Kolvenbach, H., Hampp, E., Barton, P., Zenkl, R., Hutter, M.: Towards jumping locomotion for quadruped robots on the moon. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5459–5466. IEEE (2019)

    Google Scholar 

  11. Mazumdar, A., Spencer, S.J., Hobart, C., Salton, J., Quigley, M., Wu, T., Bertrand, S., Pratt, J., Buerger, S.P.: Parallel elastic elements improve energy efficiency on the steppr bipedal walking robot. IEEE/ASME Trans. Mechatron. 22(2), 898–908 (2016)

    Article  Google Scholar 

  12. Miller, I.D., Cladera, F., Cowley, A., Shivakumar, S.S., Lee, E.S., Jarin-Lipschitz, L., Bhat, A., Rodrigues, N., Zhou, A., Cohen, A., et al.: Mine tunnel exploration using multiple quadrupedal robots. IEEE Robot. Autom. Lett. 5(2), 2840–2847 (2020)

    Article  Google Scholar 

  13. Nan, F., Kolvenbach, H., Hutter, M.: A reconfigurable leg for walking robots. IEEE Robot. Autom. Lett. (2021)

    Google Scholar 

  14. Roozing, W., Li, Z., Medrano-Cerda, G.A., Caldwell, D.G., Tsagarakis, N.G.: Development and control of a compliant asymmetric antagonistic actuator for energy efficient mobility. IEEE/ASME Trans. Mechatron. 21(2), 1080–1091 (2015)

    Article  Google Scholar 

  15. Seok, S., Wang, A., Chuah, M.Y., Hyun, D.J., Lee, J., Otten, D.M., Lang, J.H., Kim, S.: Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot. IEEE/ASME Trans. Mechatron. 20(3), 1117–1129 (2015)

    Article  Google Scholar 

  16. Tran, M., Gabert, L., Cempini, M., Lenzi, T.: A lightweight, efficient fully powered knee prosthesis with actively variable transmission. IEEE Robot. Autom. Lett. 4(2), 1186–1193 (2019)

    Article  Google Scholar 

  17. Tranzatto, M.: Cerberus: Autonomous legged and aerial robotic exploration in the tunnel and urban circuits of the darpa subterranean challenge. J. Field Robot. (2021)

    Google Scholar 

  18. Tsagarakis, N.G., Morfey, S., Dallali, H., Medrano-Cerda, G.A., Caldwell, D.G.: An asymmetric compliant antagonistic joint design for high performance mobility. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5512–5517. IEEE (2013)

    Google Scholar 

  19. Valsecchi, G., Rudin, N., Nachtigall, L., Mayer, K., Tischhauser, F., Hutter, M.: Barry: a high-payload and agile quadruped robot. IEEE/ASME Transactions on Mechatronics (2023 (Manuscript under review))

    Google Scholar 

Download references

Acknowledgments

This work was supported by ESA Contract Number 4000131516/20/NL/MH/ic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Valsecchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valsecchi, G., Tischhauser, F., Junger, J., Bernarnd, Y., Hutter, M. (2024). Actively Variable Transmission Robotic Leg. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-031-47272-5_4

Download citation

Publish with us

Policies and ethics