Abstract
Histology images are the golden standard for medical diagnostic analysis. However, 2D images can lose some critical information, such as the spatial structure of blood vessels. Therefore, it is necessary to perform 3D reconstruction for the histology images. At the same time, due to the differences between institutions and hospitals, a general 3D reconstruction method is needed. In this work, we propose a 3D reconstruction pipeline that is compatible with Whole Slide Imaging (WSI) and can also be applied to other imaging modalities such as CT images, MRI images, and immunohistochemistry images. Through semantic segmentation, point cloud construction and registration, and 3D rendering, we can reconstruct serialized images into 3D models. By optimizing the pipeline workflow, we can significantly reduce the computation workload required for the 3D reconstruction of high-resolution images and thus save time. In clinical practice, our method helps pathologists triage and evaluate tumor tissues with real-time 3D visualization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kiemen, A.L., Braxton, A.M., Grahn, M.P., et al.: CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat. Meth. 19, 1490–1499 (2022). https://doi.org/10.1038/s41592-022-01650-9
Ma, R., Wang, R., Pizer, S., Rosenman, J., McGill, S.K., Frahm, J.-M.: Real-time 3D reconstruction of colonoscopic surfaces for determining missing regions. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 573–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_64
Xie, W., et al.: Prostate cancer risk stratification via nondestructive 3D pathology with deep learning-assisted gland analysis. Cancer Res. 82(2), 334–345 (2022). https://doi.org/10.1158/0008-5472.CAN-21-2843
Chen, C., et al.: Region proposal network with graph prior and IoU-balance loss for landmark detection in 3D ultrasound. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2020). https://doi.org/10.1109/ISBI45749.2020.9098368
Wiskin, J., et al.: Full wave 3D inverse scattering transmission ultrasound tomography: breast and whole body imaging. In: 2019 IEEE International Ultrasonics Symposium (IUS), pp. 951–958 (2019). https://doi.org/10.1109/ULTSYM.2019.8925778
Kamencay, P., Zachariasova, M., Hudec, R., Benco, M., Radil, R.: 3D image reconstruction from 2D CT slices. In: 2014 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4 (2014). https://doi.org/10.1109/3DTV.2014.6874742
Kermi, A., Djennelbaroud, H.C., Khadir, M.T.: A deep learning-based 3D CNN for automated Covid-19 lung lesions segmentation from 3D chest CT scans. In: 2022 5th International Symposium on Informatics and its Applications (ISIA), pp. 1–5 (2022). https://doi.org/10.1109/ISIA55826.2022.9993505
Ueda, D., et al.: Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology 290(1), 187–194 (2019). pMID: 30351253. https://doi.org/10.1148/radiol.2018180901
Tang, H., Hsung, T.C., Lam, W.Y., Cheng, L.Y.Y., Pow, E.H.: On 2D–3D image feature detections for image-to-geometry registration in virtual dental model. In: 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP), pp. 140–143 (2020). https://doi.org/10.1109/VCIP49819.2020.9301774
Zhang, L.z., Shen, K.: A volumetric measurement algorithm of defects in 3D CT image based on spatial intuitionistic fuzzy c-means. In: 2021 IEEE Far East NDT New Technology & Application Forum (FENDT), pp. 78–82 (2021). https://doi.org/10.1109/FENDT54151.2021.9749668
Leonardi, V., Vidal, V., Mari, J.L., Daniel, M.: 3D reconstruction from CT-scan volume dataset application to kidney modeling. In: Proceedings of the 27th Spring Conference on Computer Graphics, SCCG 2011, pp. 111–120. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2461217.2461239
Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4
Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.-C.: Axial-DeepLab: stand-alone axial-attention for panoptic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 108–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_7
Bankhead, P., et al.: QuPath: open source software for digital pathology image analysis. Sci. Rep. 7(1), 16878 (2017). https://doi.org/10.1038/s41598-017-17204-5
Chauhan, I., Rawat, A., Chauhan, M., Garg, R.: Fusion of low-cost UAV point cloud with TLS point cloud for complete 3D visualisation of a building. In: 2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS), pp. 234–237 (2021). https://doi.org/10.1109/InGARSS51564.2021.9792104
Chen, M., Miao, Y., Gong, Y., Mao, X.: Convolutional neural network powered identification of the location and orientation of human body via human form point cloud. In: 2021 15th European Conference on Antennas and Propagation (EuCAP), pp. 1–5 (2021). https://doi.org/10.23919/EuCAP51087.2021.9410980
Wen, Z., Yan, Y., Cui, H.: Study on segmentation of 3D human body based on point cloud data. In: 2012 Second International Conference on Intelligent System Design and Engineering Application, pp. 657–660 (2012). https://doi.org/10.1109/ISdea.2012.676
Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 9(5), 698–700 (1987). https://doi.org/10.1109/TPAMI.1987.4767965
Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv:1801.09847 (2018)
Alsaid, B., et al.: Coexistence of adrenergic and cholinergic nerves in the inferior hypogastric plexus: anatomical and immunohistochemical study with 3D reconstruction in human male fetus. J. Anat. 214(5), 645–654 (2009). https://doi.org/10.1111/j.1469-7580.2009.01071.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-7580.2009.01071.x
Karam, I., Droupy, S., Abd-Alsamad, I., Uhl, J.F., Benoît, G., Delmas, V.: Innervation of the female human urethral sphincter: 3D reconstruction of immunohistochemical studies in the fetus. Eur. Urol. 47(5), 627–634 (2005). https://doi.org/10.1016/j.eururo.2005.01.001. https://www.sciencedirect.com/science/article/pii/S0302283805000060
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, Q., Shen, Y., Ke, J. (2023). A General Computationally-Efficient 3D Reconstruction Pipeline for Multiple Images with Point Clouds. In: Celebi, M.E., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops . MICCAI 2023. Lecture Notes in Computer Science, vol 14393. Springer, Cham. https://doi.org/10.1007/978-3-031-47401-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-47401-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47400-2
Online ISBN: 978-3-031-47401-9
eBook Packages: Computer ScienceComputer Science (R0)