Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Malware Prediction Using Tabular Deep Learning Models

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2023)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1453))

Included in the following conference series:

  • 441 Accesses

Abstract

As technology progresses, malware evolves, becoming increasingly perilous and posing a significant challenge in combating cybercriminals. With the abundance of massive data on vulnerabilities, Deep learning techniques present a chance to further boost data and system security. This paper introduces a deep neural network model that automatically generates embedding layers for each categorical feature. Its foundation lies primarily in training neural oblivious decision ensembles and TabNet model on malware data, benefiting from both end-to-end gradient-based optimisation and the power of multi-layer hierarchical representation learning. These deep architectures possess the capacity to learn numerous parameters and identify patterns within large-scale datasets. The proposed models were evaluated using the Microsoft malware prediction dataset, which includes nine million labelled subjects and 83 features. This work marks one of the early attempts to utilise deep tabular architectures for malware prediction. The experimental results demonstrate the model’s effectiveness, achieving an accuracy of 66.1% and AUC of 72.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuxin, D., Siyi, Z.: Malware detection based on deep learning algorithm. Neural Comput. & Applic. 31, 461–472 (2019)

    Article  Google Scholar 

  2. Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S.: A survey on malware detection using data mining techniques. ACM Comput. Surv. (CSUR) 50(3), 1–40 (2017)

    Article  Google Scholar 

  3. Pastrana, S., Suarez-Tangil, G.: A first look at the crypto-mining malware ecosystem: a decade of unrestricted wealth. In: Proceedings of the Internet Measurement Conference, pp. 73–86 (2019)

    Google Scholar 

  4. McIntosh, T.R., Jang-Jaccard, J., Watters, P.A.: Large scale behavioral analysis of ransomware attacks. In: Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Proceedings, Part VI 25, pp. 217–229. Springer (2018)

    Google Scholar 

  5. Button, M.: Economic and industrial espionage. Secur. J. 33, 1–5 (2020)

    Article  Google Scholar 

  6. Sharma, A., Sahay, S.K.: Evolution and detection of polymorphic and metamorphic malwares: a survey. arXiv:1406.7061 (2014)

  7. Anderson, H.S., Kharkar, A., Filar, B., Roth, P.: Evading machine learning malware detection. Black Hat, 1–6 (2017)

    Google Scholar 

  8. Jiao, Z., Hu, P., Xu, H., Wang, Q.: Machine learning and deep learning in chemical health and safety: a systematic review of techniques and applications. ACS Chem. Health & Saf. 27(6), 316–334 (2020)

    Article  Google Scholar 

  9. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  10. Wolpert, D.H.: The existence of a prior distinctions between learning algorithms. Neural Comput. 8, 1391–1420 (1996)

    Article  Google Scholar 

  11. Gomez, D., Rojas, A.: An empirical overview of the no free lunch theorem and its effect on real-world machine learning classification. Neural Comput. 28, 216–228 (2016)

    Article  MathSciNet  Google Scholar 

  12. Akhtar, M.S., Feng, T.: Malware analysis and detection using machine learning algorithms. Symmetry 14(11), 2304 (2022)

    Article  Google Scholar 

  13. Hayashi, Y.: Does deep learning work well for categorical datasets with mainly nominal attributes? Electronics 9(11), 1966 (2020)

    Article  Google Scholar 

  14. Arik, S.Ö., Pfister, T.: Tabnet: Attentive interpretable tabular learning. Proc. AAAI Conf. Artif. Intell. 35(8), 6679–6687 (2021)

    Google Scholar 

  15. Popov, S., Morozov, S., Babenko, A.: Neural oblivious decision ensembles for deep learning on tabular data. arXiv:1909.06312 (2019)

  16. Zhang, Y., Liu, Z., Jiang, Y.: The classification and detection of malware using soft relevance evaluation. IEEE Trans. Reliab. 71(1), 309–320 (2020)

    Article  Google Scholar 

  17. Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi, M.: Microsoft malware classification challenge. arXiv:1802.10135 (2018)

  18. Narayanan, B.N., Djaneye-Boundjou, O., Kebede, T.M.: Performance analysis of machine learning and pattern recognition algorithms for malware classification. In: 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS), pp. 338–342. IEEE (2016)

    Google Scholar 

  19. Zhang, Y., Huang, Q., Ma, X., Yang, Z., Jiang, J.: Using multi-features and ensemble learning method for imbalanced malware classification. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 965–973. IEEE (2016)

    Google Scholar 

  20. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visualization and automatic classification. In: Proceedings of the 8th International Symposium on Visualization for Cyber Security, pp. 1–7 (2011)

    Google Scholar 

  21. Bahtiyar, Ş, Yaman, M.B., Altıniğne, C.Y.: A multi-dimensional machine learning approach to predict advanced malware. Comput. Netw. 160, 118–129 (2019)

    Article  Google Scholar 

  22. Pan, Q., Tang, W., Yao, S.: The application of LightGBM in microsoft malware detection. J. Phys. Conf. Ser. 1684(1), 012041 (2020)

    Article  Google Scholar 

  23. Younis, L.B., Sweda, S., Alzu’bi, A.: Forensics analysis of private web browsing using android memory acquisition. In: 2021 12th International Conference on Information and Communication Systems (ICICS), pp. 273–278. IEEE (2021)

    Google Scholar 

  24. Rhode, M., Burnap, P., Jones, K.: Early-stage malware prediction using recurrent neural networks. Comput. & Secur. 77, 578–594 (2018)

    Google Scholar 

  25. Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C.: Deep learning for classification of malware system call sequences. In: AI 2016: Advances in Artificial Intelligence: 29th Australasian Joint Conference, Hobart, TAS, Australia, December 5–8, 2016, Proceedings 29, pp 137–149. Springer International Publishing (2016)

    Google Scholar 

  26. Kalash, M., Rochan, M., Mohammed, N., Bruce, N.D., Wang, Y., Iqbal, F.: Malware classification with deep convolutional neural networks. In: 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE (2018)

    Google Scholar 

  27. Gopinath, M., Sethuraman, S.C.: A comprehensive survey on deep learning based malware detection techniques. Comput. Sci. Rev. 47, 100529 (2023)

    Article  Google Scholar 

  28. Wang, Z., Liu, Q., Chi, Y.: Review of android malware detection based on deep learning. IEEE Access 8, 181102–181126 (2020)

    Article  Google Scholar 

  29. McDole, A., Gupta, M., Abdelsalam, M., Mittal, S., Alazab, M.: Deep learning techniques for behavioral malware analysis in cloud iaas. In: Malware Analysis Using Artificial Intelligence and Deep Learning, pp. 269–285 (2021)

    Google Scholar 

  30. Khan, A.R., Yasin, A., Usman, S.M., Hussain, S., Khalid, S., Ullah, S.S.: Exploring lightweight deep learning solution for malware detection IoT constraint environment. Electronics 11(24), 4147 (2022)

    Article  Google Scholar 

  31. Abuarqoub, A., Abuarqoub, S., Alzu’bi, A., Muthanna, A.: The impact of quantum computing on security in emerging technologies. In: The 5th International Conference on Future Networks & Distributed Systems, pp. 171–176. ACM (2021)

    Google Scholar 

  32. Kasongo, S.M., Sun, Y.: A deep learning method with filter based feature engineering for wireless intrusion detection system. IEEE access. 7, 38597–38607 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Alzu’bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alzu’bi, A., Abuarqoub, A., Abdullah, M., Agolah, R.A., Al Ajlouni, M. (2024). Malware Prediction Using Tabular Deep Learning Models. In: Naik, N., Jenkins, P., Grace, P., Yang, L., Prajapat, S. (eds) Advances in Computational Intelligence Systems. UKCI 2023. Advances in Intelligent Systems and Computing, vol 1453. Springer, Cham. https://doi.org/10.1007/978-3-031-47508-5_30

Download citation

Publish with us

Policies and ethics