Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Decision Support Systems Based on Artificial Intelligence for Supply Chain Management: A Literature Review

  • Conference paper
  • First Online:
Advances in Intelligent System and Smart Technologies (I2ST 2023)

Abstract

The aim of this paper is to provide an overview of the integration of artificial intelligence (IA) in decision support systems (DSS) to solve problems related to the Supply Chain Management (SCM). Non-intelligent DSS approaches based on traditional methods are unable to handle unstructured data, and they face great difficulties in describing non-linear relationships. Looking for intelligent solutions that are able to overcome these difficulties is becoming increasingly important and has led to a new trend of adding intelligence capability to DSS. Many efforts have been devoted to propose intelligent decision support systems for SCM. To shed light on the degree of AI integration in DSS in this context, we present a literature review highlighting the following results: (a) AI integration in DSS for SCM was still in the development stage, (b) multi-agent systems and machine learning are the most used AI techniques and methods in DSS, and (c) risk management and performance improvement are the most covered activities in intelligent DSS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wahyuni, D.: The importance of supply chain management in competitive business: a case study on woolworths. Social Science Research Network, Rochester, NY, SSRN Scholarly Paper ID 1739399 (2010). Available: https://papers.ssrn.com/abstract=1739399

  2. Keen, P.G.W.: Decision support systems: the next decade. Decis. Support Syst. 3(3), 253–265 (1987). https://doi.org/10.1016/0167-9236(87)90180-1

    Article  Google Scholar 

  3. Teniwut, W.A., Hasyim, C.L.: Decision support system in supply chain: A systematic literature review, pp. 131–148 (2020). https://doi.org/10.5267/j.uscm.2019.7.009

  4. Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.: Past, present, and future of decision support technology. Decis. Support Syst. 33(2), 111–126 (2002). https://doi.org/10.1016/S0167-9236(01)00139-7

    Article  Google Scholar 

  5. Keen, P.G.: Decision support systems: a research perspective. Decision support systems: Issues and challenges: Proceedings of an international task force meeting, pp. 23–44 (1980)

    Google Scholar 

  6. Simon, H.A.: The new science of management decision. New York, NY, US: Harper & Brothers, pp. xii, 50 (1960). https://doi.org/10.1037/13978-000

  7. Courbon, J.C.: Processus de décision et aide à la décision. Economies et sociétés, pp. 1455–1476 (1982)

    Google Scholar 

  8. Lavergne, J.P.: La décision : psychologie et méthodologie: connaissance du problème, applications pratiques., ESF-Entreprise moderne d’édition: Librairies techniques (1983)

    Google Scholar 

  9. Ni, D., Xiao, Z., Lim, M.K.: A systematic review of the research trends of machine learning in supply chain management. Int. J. Mach. Learn. Cyber. 11(7), 1463–1482 (2020). https://doi.org/10.1007/s13042-019-01050-0

    Article  Google Scholar 

  10. Goodwin, R., Keskinocak, P., Murthy, S., Wu, F., Akkiraju, R.: Intelligent decision support for the e-supply chain. Artif. Intell. Electron. Commerce, p. 4 (1999)

    Google Scholar 

  11. Sadeh, N.M., Hildum, D.W., Kjenstad, D.: Agent-based E-supply chain decision support. J. Organ. Comput. Electron. Commer. 13(3–4), 225–241 (2003). https://doi.org/10.1080/10919392.2003.9681162

    Article  Google Scholar 

  12. Mele, F.D., Guillén, G., Espuña, A., Puigjaner, L.: An agent-based approach for supply chain retrofitting under uncertainty. Comput. Chem. Eng. 31(5), 722–735 (2007). https://doi.org/10.1016/j.compchemeng.2006.12.013

    Article  Google Scholar 

  13. Giannakis, M., Louis, M.: A multi-agent based framework for supply chain risk management. J. Purch. Supply Manag. 17(1), 23–31 (2011). https://doi.org/10.1016/j.pursup.2010.05.001

    Article  Google Scholar 

  14. Ben Othman, S., Zgaya, H., Dotoli, M., Hammadi, S.: An agent-based decision support system for resources’ scheduling in emergency supply chains. Control Eng. Pract. 59, 27–43 (2017). https://doi.org/10.1016/j.conengprac.2016.11.014

  15. Solomon, A., Ketikidis, P., Choudhary, A., Tiwari, M.K.: A knowledge based decision support system for supply chain risk management. European Decision Sciences Institute Conference EDSI, p. 12 (2012)

    Google Scholar 

  16. Baryannis, G., Dani, S., Validi, S., Antoniou, G.: Decision support systems and artificial intelligence in supply chain risk management. In: Revisiting Supply Chain Risk, G. A. Zsidisin and M. Henke, Eds. Cham: Springer International Publishing, pp. 53–71 (2019). https://doi.org/10.1007/978-3-030-03813-7_4

  17. Amaliah, Y.: Decision support system for determination of employees using fuzzy decision tree. 1st International Conference on Engineering and Technology Development, p. 5 (2012)

    Google Scholar 

  18. Gharehbaghi, A., Lindén, M., Babic, A.: A decision support system for cardiac disease diagnosis based on machine learning methods. Informatics for Health: Connected Citizen-Led Wellness and Population Health, pp. 43–47 (2017). https://doi.org/10.3233/978-1-61499-753-5-43

  19. González Rodríguez, G., Gonzalez-Cava, J.M., Méndez Pérez, J.A.: An intelligent decision support system for production planning based on machine learning. J. Intell. Manuf. 31(5), 1257–1273 (2020). https://doi.org/10.1007/s10845-019-01510-y

  20. Alavi, B., Tavana, M., Mina, H.: A dynamic decision support system for sustainable supplier selection in circular economy. Sustain. Production Consumption 27, 905–920 (2021). https://doi.org/10.1016/j.spc.2021.02.015

    Article  Google Scholar 

  21. Kamble, S.S., Gunasekaran, A., Kumar, V., Belhadi, A., Foropon, C.: A machine learning based approach for predicting blockchain adoption in supply Chain. Technol. Forecast. Soc. Chang. 163, 120465 (2021). https://doi.org/10.1016/j.techfore.2020.120465

    Article  Google Scholar 

  22. Ye, C., Zaraté, P., Kamissoko, D.: A DSS based on a control tower for supply chain risks management. Lecture Notes in Business Information Processing, vol. 447 LNBIP, pp. 124–136 (2022). https://doi.org/10.1007/978-3-031-06530-9_10

  23. Touzet, C.: Les reseaux de neurones artificiels, introduction au connexionnisme, EC2, p. 130 (1992)

    Google Scholar 

  24. Chung, W.W.C., Wong, K.C.M., Soon, P.T.K.: An ANN-based DSS system for quality assurance in production network. J. Manuf. Technol. Manag. 18(7), 836–857 (2007). https://doi.org/10.1108/17410380710817282

    Article  Google Scholar 

  25. Sholahuddin, A., Ramadhan, A.P., Supriatna, A.K.: The application of ANN-linear perceptron in the development of DSS for a fishery industry. Procedia Comput. Sci. 72, 67–77 (2015). https://doi.org/10.1016/j.procs.2015.12.106

    Article  Google Scholar 

  26. Park, Y.-B., Yoon, S.-J., Yoo, J.-S.: Development of a knowledge-based intelligent decision support system for operational risk management of global supply chains. Europ. J. Indus. Eng. 12(1), 93–115 (2018). https://doi.org/10.1504/EJIE.2018.089878

    Article  Google Scholar 

  27. Kuo, R.J., Chen, J.A.: A decision support system for order selection in electronic commerce based on fuzzy neural network supported by real-coded genetic algorithm. Expert Syst. Appl. 26(2), 141–154 (2004). https://doi.org/10.1016/S0957-4174(03)00115-5

    Article  Google Scholar 

  28. Kuo, R.J., Xue, K.C.: A decision support system for sales forecasting through fuzzy neural networks with asymmetric fuzzy weights. Decis. Support Syst. 24(2), 105–126 (1998). https://doi.org/10.1016/S0167-9236(98)00067-0

    Article  Google Scholar 

  29. Efendigil, T., Önüt, S., Kahraman, C.: A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis. Expert Syst. Appl. 36(3), Part 2, 6697–6707 (2009). https://doi.org/10.1016/j.eswa.2008.08.058

  30. del R. Pérez-Salazar, M., Aguilar-Lasserre, A.A., Cedillo-Campos, M.G., Posada-Gómez, R., del Moral-Argumedo, M.J., Hernández-González, J.C.: An agent-based model driven decision support system for reactive aggregate production scheduling in the green coffee supply chain. Appl. Sci. 9(22), Art. no. 22 (2019). https://doi.org/10.3390/app9224903

  31. Yusianto, R., Marimin, S., Hardjomidjojo, H.: Intelligent spatial decision support system concept in the potato agro-industry supply chain. In: 2020 International Conference on Computer Science and Its Application in Agriculture (ICOSICA), pp. 1–7 (2020). https://doi.org/10.1109/ICOSICA49951.2020.9243233

  32. ul Asar, A., Zhou, M.C., Caudill, R.J., ul Asar, S.: Modelling risks in supply chains using Petri net approach. Int. J. Serv. Oper. Inf. 1(3), 273–285 (2006). https://doi.org/10.1504/IJSOI.2006.011016

  33. Costantino, N., Dotoli, M., Falagario, M., Fanti, M.P., Iacobellis, G.: A Petri net based decision support system for purchasing management in supply chains. IFAC Proc. Volumes 39(3), 641–646 (2006). https://doi.org/10.3182/20060517-3-FR-2903.00326

    Article  Google Scholar 

  34. Zegordi, S.H., Davarzani, H.: Developing a supply chain disruption analysis model: application of colored Petri-nets. Expert Syst. Appl. 39(2), 2102–2111 (2012). https://doi.org/10.1016/j.eswa.2011.07.137

    Article  Google Scholar 

  35. Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Psychology Press, New York (1989).https://doi.org/10.4324/9780203781821

  36. Kumar, V., Viswanadham, N.: A CBR-based decision support system framework for construction supply chain risk management. In: IEEE International Conference on Automation Science and Engineering, Scottsdale, AZ, USA, pp. 980–985 (2007). https://doi.org/10.1109/COASE.2007.4341831

  37. Watson, I., Marir, F.: Case-based reasoning: a review. Knowl. Eng. Rev. 9(4), 327–354 (1994). https://doi.org/10.1017/S0269888900007098

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Ait Ben Hamou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamou, K.A.B., Jarir, Z., Quafafou, M., Elfirdoussi, S. (2024). Decision Support Systems Based on Artificial Intelligence for Supply Chain Management: A Literature Review. In: Gherabi, N., Awad, A.I., Nayyar, A., Bahaj, M. (eds) Advances in Intelligent System and Smart Technologies. I2ST 2023. Lecture Notes in Networks and Systems, vol 826. Springer, Cham. https://doi.org/10.1007/978-3-031-47672-3_19

Download citation

Publish with us

Policies and ethics