Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Causal Analysis of Artificial Intelligence Adoption in Project Management

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 822))

Included in the following conference series:

  • 615 Accesses

Abstract

Artificial intelligence (AI) technologies have great potential to improve decision-making and automation processes in various sectors, including project management. AI technologies could significantly contribute to overcoming the complexity of project management through process automation, cognitive insight, and engagement. However, the adoption of AI technologies still faces many challenges due to technical, human resource-related, organizational, and legal issues. Our research identified the potential factors that lead to the willingness of people and organizations to adopt AI technologies in project management. This paper proposes a causal model describing multivariate causal relationships between the driving factors and the willingness to adopt AI. The causal model is a set of hypotheses evaluated through a survey and causal analysis using the structural equation modeling (SEM) technique. The analysis focused on six factors influencing the willingness to adopt AI in project management, i.e., performance effectiveness, price, previous experience, feedback, complexity, and complementary technologies. Our research found that the perception of the high effectiveness of AI technologies leading to higher profits and overall the state of the project is the main factor influencing the willingness to adopt AI technologies in project management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, S., Nur Ain Zulkurnain, N., Khairushalimi, F.I.: Assessing the validity and reliability of a measurement model in structural equation modeling (sem). Br. J. Math. Comput. Sci. 15(3), 1–8 (2016)

    Google Scholar 

  2. Avkiran, N.K., et al.: Measuring the systemic risk of regional banks in Japan with pls-sem. Theor. Econ. Lett. 8(11), 2024 (2018)

    Google Scholar 

  3. Belharet, A.: Report on the impact of artificial intelligence on project management

    Google Scholar 

  4. Bughin, J., Seong, J., Manyika, J., Chui, M., Joshi, R.: Notes from the ai frontier: Modeling the impact of ai on the world economy. McKinsey Glob. Inst. 4 (2018)

    Google Scholar 

  5. Cabrera-Sánchez, J.-P., Ramos-de Luna, I., Carvajal-Trujillo, E., Villarejo-Ramos, A.F.: Online recommendation systems: Factors influencing use in e-commerce. Sustainability 12(21), 8888 (2020)

    Google Scholar 

  6. Reza Davahli, M.: The last state of artificial intelligence in project management (2020). arXiv:2012.12262

  7. Dawson, N.: 6 major factors affecting ai adoption and diffusion in firms (2019)

    Google Scholar 

  8. Elrajoubi, S.: Artificial intelligence in project management. In: Seminar Paper Interactive Online Ph.D. Course: Project Management. LIGS University USA, pp. 9–12

    Google Scholar 

  9. Fama, E.F.: Agency problems and the theory of the firm. J. Polit. Econ. 88(2), 288–307 (1980)

    Google Scholar 

  10. David Garson, G.: Path analysis. Statistical Associates Publishing Asheboro, NC, (2013)

    Google Scholar 

  11. Haenlein, M., Kaplan, A.M.: A beginner’s guide to partial least squares analysis. Underst. Stat. 3(4), 283–297 (2004)

    Google Scholar 

  12. Hair, J.F., Ringle, C.M., Sarstedt, M.: Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Plan. 46(1–2), 1–12 (2013)

    Google Scholar 

  13. Halina, M.: Insightful artificial intelligence. Mind Lang. 36(2), 315–329 (2021)

    Article  Google Scholar 

  14. Hall, B.H., Khan, B.: Adoption of New Technology (2003)

    Google Scholar 

  15. Hancock, P.A.: Some pitfalls in the promises of automated and autonomous vehicles. Ergonomics 62(4), 479–495 (2019)

    Google Scholar 

  16. Henseler, J., Hubona, G., Ray, P.A.: Partial least squares path modeling: Updated guidelines. In: Latan, H., Noonan, R. (eds.) Partial Least Squares Path Modeling: Basic Concepts, Methodological Issues and Applications (2017)

    Google Scholar 

  17. Project Management Institute. Project management job growth and talent gap 2017–2027. Project Management Institute Newtown Square, PA (2017)

    Google Scholar 

  18. Joshi, N.: How AI Can Transform the Transportation Industry (2019)

    Google Scholar 

  19. Kashyap, R., Kumar, A.V.: Challenges and Applications for Implementing Machine Learning in Computer Vision (2019)

    Google Scholar 

  20. Kutschenreiter-Praszkiewicz, I.: Application of artificial intelligence in project management under risk condition. Appl. Comput. Sci. 5(1) (2009)

    Google Scholar 

  21. Lahmann, M.: Ai will transform project management. Are you ready? (2018)

    Google Scholar 

  22. Matell, M.S., Jacoby, J.: Is there an optimal number of alternatives for likert-scale items? effects of testing time and scale properties. J. Appl. Psychol. 56(6), 506 (1972)

    Google Scholar 

  23. Matt, D.T., Modrák, V., Zsifkovits, H.: Industry 4.0 for Smes: Challenges, Opportunities and Requirements (2020)

    Google Scholar 

  24. Middleton, S.: 3 ways ai will change project management for the better (2017)

    Google Scholar 

  25. Mullainathan, S., Thaler, R.H.: Behavioral Economics (2000)

    Google Scholar 

  26. Noelle, C.: Why Ai is the Future of Finance (2019)

    Google Scholar 

  27. OECD. Recommendation of the council on artificial intelligence (2019)

    Google Scholar 

  28. Chust, A.P., Heras, S., Gil Pérez, A.: Intelligent project management tools. In: Proceedings from the 24th International Congress on Project Management and Engineering = Comunicaciones presentadas al XIV Congreso Internacional de Dirección e Ingeniería de Proyectos, celebrado del 7 al 9 de julio de 2020, pp. 1860–1870. Asociación Española de Dirección e Ingeniería de Proyectos (AIEPRO) (2020)

    Google Scholar 

  29. Prieto, B.: Impacts of artificial intelligence on management of large complex projects. PM World J. 8(5), 1–20 (2019)

    Google Scholar 

  30. Reikhanova, I.V., Ilyina, L.A., Kuklev, S.E., Zakharov, A.A.: Ai as a subject of staff: Management and team-building. In: 13th International Scientific and Practical Conference-Artificial Intelligence Anthropogenic nature versus Social Origin, pp. 345–351. Springer, Berlin (2020)

    Google Scholar 

  31. Sarstedt, M., Cheah, J.-H.: Partial Least Squares Structural Equation Modeling Using Smartpls: A Software Review (2019)

    Google Scholar 

  32. Sion, G.: Smart educational ecosystems: Cognitive engagement and machine intelligence algorithms in technology-supported learning environments. Anal. Metaphys. 17, 140–146 (2018)

    Article  Google Scholar 

  33. Taddeo, M., Floridi, L.: How ai can be a force for good. Science 361(6404), 751–752 (2018)

    Article  MathSciNet  Google Scholar 

  34. Todorov, G.: 65 artificial intelligence statistics for 2021 and beyond (2021)

    Google Scholar 

  35. Wauters, M., Vanhoucke, M.: A comparative study of artificial intelligence methods for project duration forecasting. Expert Syst. Appl. 46, 249–261 (2016)

    Article  Google Scholar 

  36. Weijters, B., Cabooter, E., Schillewaert, N.: The effect of rating scale format on response styles: The number of response categories and response category labels. Int. J. Res. Mark. 27(3), 236–247 (2010)

    Article  Google Scholar 

  37. Wu, D.D., Chen, S.-H., Olson, D.L.: Business intelligence in risk management: Some recent progresses. Inf. Sci. 256, 1–7 (2014)

    Google Scholar 

  38. Zujus, A.: Ai project development—how project managers should prepare (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendro Wicaksono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarafanov, E., Valilai, O.F., Wicaksono, H. (2024). Causal Analysis of Artificial Intelligence Adoption in Project Management. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 822. Springer, Cham. https://doi.org/10.1007/978-3-031-47721-8_17

Download citation

Publish with us

Policies and ethics