Abstract
Controlling potato plant diseases is crucial in agriculture because diseased plants can result in a significant loss in crop production. Farmers currently use manual visual inspections to classify potato plants that are diseased with the potato virus Y. This paper shows the feasibility of using RGB images to automate this process. A small dataset of potato plants pictures was acquired from an outdoor potato field and annotated with polygons to denote the location of the leaves. VGG16 and ResNet50, two convolutional neural networks, were trained to classify individual leaves. Additionally, experiments were conducted by changing the brightness of the images during training. This was done to counteract the different illumination levels present in our dataset. ResNet50’s best performing experimental setup achieved an accuracy of 0.77, while VGG16 achieved an accuracy of 0.70. In general, classifiers with brightness augmentations outperformed other setups. Examining the class activation mappings of shallow layers revealed a focus on either the margins and midrib or the overall texture of the leaf. This corresponds to the characteristics used by domain experts who concentrate on colour and mosaic patterns on the foliage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, A., Saraswat, D., El Gamal, A.: A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agric. Technol. 3, 100083 (2023)
Alam, K., Rolfe, J.: Economics of plant disease outbreaks. Agenda: J. Policy Anal. Reform 133–146 (2006)
Alicioglu, G., Sun, B.: A survey of visual analytics for explainable artificial intelligence methods. Computers & Graphics, 102:502–520, 2 2022
Bauske, M.J., Robinson, A.P., and Gudmestad, N.C. Early Blight in Potato, NDSU Agriculture and Extension, 7 2018
Centraal Bureau voor de Statistiek (CBS). Ondernemers zien werkdruk toenemen als gevolg personeelstekort. 2022
Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubramanian, V.N. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 839–847, 2018
Couture, J.J., Singh, A., Charkowski, A.O., Groves, R.L., Gray, S.M., Bethke, P.C., Townsend, P.A.: Integrating spectroscopy with potato disease management. Plant Dis. 102(11), 2233–2240 (2018)
L. Evans-Goldner. Potato Virus Y Strains, USDA - APHIS Animal and Plant Health Inspection Service, 2020
Deng, J. and W. Dong and R. Socher and L. J. Li and Li, K. and L. Fei-Fei. Imagenet: a large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. IEEE, 2009
Ferentinos, K.P.: Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018)
Flood, J. The importance of plant health to food security. Food Security, 2(3), 215–231, 7 2010
Griffel, L.M., Delparte, D., Edwards, J.: Using support vector machines classification to differentiate spectral signatures of potato plants infected with potato virus y. Comput. Electron. Agric. 153, 318–324 (2018)
Griffel, L.M., Delparte, D., Whitworth, J., Bodily, P., Hartley, D.: Evaluation of artificial neural network performance for classification of potato plants infected with potato virus y using spectral data on multiple varieties and genotypes. Smart Agric. Technol. 3, 100101 (2023)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p. 6 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)
Hughes, D.P., Salathe, M.: An open access repository of images on plant health to enable the development of mobile disease diagnostics (2015)
Jiang, P.T., Zhang, C.B., Hou, Q., Cheng, M.M., Wei, Y.: Layercam: exploring hierarchical class activation maps for localization. IEEE Trans. Image Process. 30, 5875–5888 (2021)
Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon, Y., TaoXie, Michael, K., Fang, J., imyhxy, Lorna, Wong, C., Yifu, Z., Abhiram, Montes, D., Wang, Z., Fati, C., Nadar, J., Laughing, UnglvKitDe, tkianai, yxNONG, Skalski, P., Hogan, A., Strobel, M., Jain, M., Mammana, L., xylieong. ultralytics/yolov5: v6.2 - YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai integrations (2022)
Johnson, J., Sharma, G., Srinivasan, S., Masakapalli, S.K., Sharma, S., Sharma, J., Dua, V.K.: Enhanced field-based detection of potato blight in complex backgrounds using deep learning. Plant Phenomics (2021)
Jolliffe, I., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374, 20150202, 04 (2016)
Khalifa, N.E.M., Taha, M.H.N., El-Maged, L.M.A., Hassanien, A.E.: Artificial intelligence in potato leaf disease classification: a deep learning approach. Stud. Big Data 63–79, 12 (2020)
Khan, A., Sohail A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516, 4 (2020)
Kinger, S., Kulkarni, V.: Explainable ai for deep learning based disease detection. In: 2021 Thirteenth International Conference on Contemporary Computing (IC3-2021), IC3 ’21, New York, NY, USA, 2021, pp. 209–216. Association for Computing Machinery (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.), 3rd International Conference on Learning Representations, ICLR 2015, an Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)
Land-en Tuinbouworganisatie Nederland (LTO). Peiling werknemerstekort voor teelt-, productie- en oogstwerkzaamheden. Technical report, 2 2022
Lee, J.R., Kim, S., Park, I., Eo, T., Hwang, D.: Relevance-cam: your model already knows where to look. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14939–14948 (2021)
Lee, S.H., Goëau, H., Bonnet, P., Joly, A.: New perspectives on plant disease characterization based on deep learning. Comput. Electron. Agric. 170, 105220 (2020)
Li, X., Zhou, Y., Liu, J., Wang, L., Zhang, J., Fan, X.: The detection method of potato foliage diseases in complex background based on instance segmentation and semantic segmentation. Front. Plant Sci. 13, 7 (2022)
Mahlein, A.K., Kuska, M.T., Behmann, J., Polder, G., Walter, A.: Hyperspectral sensors and imaging technologies in phytopathology: state of the art. Annu. Rev. Phytopathol. 56(1), 535–558, 8 (2018)
Mahum, R., Munir, H., Mughal, Z., Awais, M., Khan, F.S., Saqlain, M., Mahamad, S., Tlili, I.: A novel framework for potato leaf disease detection using an efficient deep learning model. Hum. Ecol. Risk Assess.: Int. J. 1–24, 4 (2022)
Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L.R., Davis, C.E., Dandekar, A.M.: Advanced methods of plant disease detection. a review. Agron. Sustain. Dev. 35(1), 1–25, 9 (2014)
Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., Wu, H.: Mixed precision training. In: International Conference on Learning Representations (2018)
Mishra, S., Singh, A., Singh, V.: Application of MobileNet-v1 for potato plant disease detection using transfer learning. In: 2021 Workshop on Algorithm and Big Data, p. 3 (2021)
Polder, G., Blok, P.M., De Villiers, H.A.C., Van der Wolf, J.M., Kamp, J.: Potato virus y detection in seed potatoes using deep learning on hyperspectral images. Front. Plant Sci. 10, 209 (2019)
Rashid, J., Khan, I., Ali, G., Almotiri, S.H., AlGhamdi, M.A., Masood, K.: Multi-level deep learning model for potato leaf disease recognition. Electronics 10(17), 2064, 8 (2021)
Robinson, A., Secor, G., Pasche, J.: Late blight in potato, NDSU agriculture and extension, p. 5 (2022)
De Rossia, R.L., Guerraab, F.A., Plazasa, M.C., Vuleticab, E.E., Brücherab, E., Guerraa, G.D., Reisc, E.M.: Crop damage, economic losses, and the economic damage threshold for northern corn leaf blight 154, 105901 (2022)
Sandhu, G.K., Kaur, R.: Plant disease detection techniques: a review. In: 2019 International Conference on Automation, Computational and Technology Management (ICACTM), vol. 4 (2019)
Savary, S., Teng, P.S., Willocquet, L., Nutter, F.W., Jr.: Quantification and modeling of crop losses: a review of purposes 44(1), 89–112 (2006)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556
Speith, T.: A review of taxonomies of explainable artificial intelligence (XAI) methods. In: 2022 ACM Conference on Fairness, Accountability, and Transparency, p. 6 (2022)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)
Thomas, S., Kuska, M.T., Bohnenkamp, D., Brugger, A., Alisaac, E., Wahabzada, M., Behmann, J., Mahlein, A.K.: Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective. J. Plant Dis. Prot. 125(1), 5–20, 9 (2017)
Chebet Too, E., Yujian, L., Njuki, S., Yingchun, L.: A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 161, 272–279 (2019). BigData and DSS in Agriculture
Valkonen, J.P.T.: Viruses: economical losses and biotechnological potential. In: Potato Biology and Biotechnology, pp. 619–641. Elsevier (2007)
van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(86), 2579–2605 (2008)
Vanhaute, E., Gráda, Ó, Paping, R.: The european subsistence crisis of 1845–1850. A comparative perspective. In: When the potato failed. Causes and effects of the ‘last’ European subsistance crisis, 1845–1850, pp. 15–42. Brepols (2007)
Wei, K., Chen, B., Zhang, J., Fan, S., Wu, K., Liu, G., Chen, D.: Explainable deep learning study for leaf disease classification. Agronomy 12(5) (2022)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Voetman, R., Dijkstra, W., Wolters, J.E., Dijkstra, K. (2024). Identification of Potato Virus Y in Potato Plants Using Deep Learning and GradCAM Verification. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-031-47724-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-47724-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47723-2
Online ISBN: 978-3-031-47724-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)