Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reliable Production Process Design Problem: Compact MILP Model andĀ ALNS-Based Primal Heuristic

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2023)

Abstract

Supply chain resilience is one of the most relevant topics of operations research and production management, which is aimed to risk mitigation in the global manufacturing, logistics, and trade. Conventional approach for resilient supply chain design involves the stochastic modeling and scenery-based description of anticipated failures in transportation networks. However, the stochastic approach can be insufficiently adequate in a situation of an unexpected failure or interruption. In this paper, we introduce the Reliable Production Process Design Problem (RPPDP), where the goal is to guarantee a suitable behaviour of the given highly distributed manufacturing system with respect to an (almost) arbitrary potential failure. This problem appears to be strongly NP-hard, similarly to the famous Constrained Shortest Path Tour and Shortest Simple Path with t Must Pass Nodes combinatorial problems. In order to find (close to) optimal solutions of the problem in question efficiently, we propose a compact Mixed Integer Linear Program (MILP) model and an Adaptive Large Neighborhood Search (ALNS) based primal heuristic. Results of their extensive numerical evaluation on top of the Gurobi branching framework, against the instances derived from the PCGTSPLIB library show high performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Andrade, R.C.: Elementary shortest-paths visiting a given set of nodes (2013). http://www.din.uem.br/sbpo/sbpo2013/pdf/arq0242.pdf

  2. de Andrade, R.C.: New formulations for the elementary shortest-path problem visiting a given set of nodes. Eur. J. Oper. Res. 254(3), 755ā€“768 (2016). https://doi.org/10.1016/j.ejor.2016.05.008

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. Balas, E., Fischetti, M., Pulleyblank, W.: The precedence-constraint asymmetric traveling salesman polytope. Math. Program. 68, 241ā€“265 (1995). https://doi.org/10.1007/BF01585767

    ArticleĀ  MATHĀ  Google ScholarĀ 

  4. Balas, E., Simonetti, N.: Linear time dynamic-programming algorithms for new classes of restricted TSPs: a computational study. INFORMS J. Comput. 13(1), 56ā€“75 (2001). https://doi.org/10.1287/ijoc.13.1.56.9748

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  5. Chentsov, A.G., Khachai, M.Y., Khachai, D.M.: An exact algorithm with linear complexity for a problem of visiting megalopolises. Proc. Steklov Inst. Math. 295(1), 38ā€“46 (2016). https://doi.org/10.1134/S0081543816090054

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. Deng, C., Xiong, Y., Yang, L., Yang, Y.: A smoothing SAA method for solving a nonconvex multisource supply chain stochastic optimization model. Math. Probl. Eng. 2022 (2022). https://doi.org/10.1155/2022/5617213

  7. Dewil, R., Vansteenwegen, P., Cattrysse, D.: A review of cutting path algorithms for laser cutters. Int. J. Adv. Manuf. Technol. 87(5), 1865ā€“1884 (2016). https://doi.org/10.1007/s00170-016-8609-1

    ArticleĀ  Google ScholarĀ 

  8. Fan, Y., Schwartz, F., Vob, S., Woodruff, D.L.: Catastrophe insurance and flexible planning for supply chain disruption management: a stochastic simulation case study. Int. J. Prod. Res. (2023). https://doi.org/10.1080/00207543.2023.2176179

  9. Ferone, D., Festa, P., Guerriero, F.: An efficient exact approach for the constrained shortest path tour problem. Optim. Methods Softw. 35(1), 1ā€“20 (2020). https://doi.org/10.1080/10556788.2018.1548015

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. Ferone, D., Festa, P., Guerriero, F., LaganĆ , D.: The constrained shortest path tour problem. Comput. Oper. Res. 74, 64ā€“77 (2016). https://doi.org/10.1016/j.cor.2016.04.002

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  11. Gomes, T., Marques, S., Martins, L., Pascoal, M., Tipper, D.: Protected shortest path visiting specified nodes (2015). https://doi.org/10.1109/RNDM.2015.7325218

  12. Gomes, T., Martins, L., Ferreira, S., Pascoal, M., Tipper, D.: Algorithms for determining a node-disjoint path pair visiting specified nodes. Opt. Switching Netw. 23 (2017). https://doi.org/10.1016/j.osn.2016.05.002

  13. L. Gurobi Optimization: Gurobi optimizer reference manual (2021). https://www.gurobi.com/documentation/9.5/refman/index.html

  14. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Springer, Boston (2007)

    BookĀ  MATHĀ  Google ScholarĀ 

  15. Kalateh Ahani, I., Salari, M., Hosseini, S.M., Iori, M.: Solution of minimum spanning forest problems with reliability constraints. Comput. Ind. Eng. 142, 106365 (2020). https://doi.org/10.1016/j.cie.2020.106365

    ArticleĀ  Google ScholarĀ 

  16. Karuppusamy, N.S., Kang, B.Y.: Minimizing airtime by optimizing tool path in computer numerical control machine tools with application of \(A^*\) and genetic algorithms. Adv. Mech. Eng. 9(12), 1687814017737448 (2017). https://doi.org/10.1177/1687814017737448

  17. Khachai, D., Sadykov, R., Battaia, O., Khachay, M.: Precedence constrained generalized traveling salesman problem: polyhedral study, formulations, and branch-and-cut algorithm. Eur. J. Oper. Res. (2023). https://doi.org/10.1016/j.ejor.2023.01.039

  18. Khachai, M.Y., Neznakhina, E.D.: Approximation schemes for the generalized traveling salesman problem. Proc. Steklov Inst. Math. 299(1), 97ā€“105 (2017). https://doi.org/10.1134/S0081543817090127

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  19. Khachay, M., Kudriavtsev, A., Petunin, A.: PCGLNS: a heuristic solver for the precedence constrained generalized traveling salesman problem. In: Olenev, N., Evtushenko, Y., Khachay, M., Malkova, V. (eds.) OPTIMA 2020. LNCS, vol. 12422, pp. 196ā€“208. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62867-3_15

    ChapterĀ  Google ScholarĀ 

  20. Khachay, M., Neznakhina, K.: Complexity and approximability of the Euclidean generalized traveling salesman problem in grid clusters. Ann. Math. Artif. Intell. 88(1), 53ā€“69 (2020). https://doi.org/10.1007/s10472-019-09626-w

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  21. Kudriavtsev, A., et al.: The shortest simple path problem withĀ aĀ fixed number ofĀ must-pass nodes: aĀ problem-specific branch-and-bound algorithm. In: Simos, D.E., Pardalos, P.M., Kotsireas, I.S. (eds.) LION 2021. LNCS, vol. 12931, pp. 198ā€“210. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92121-7_17

    ChapterĀ  Google ScholarĀ 

  22. Martin, S., Magnouche, Y., Juvigny, C., Leguay, J.: Constrained shortest path tour problem: branch-and-price algorithm. Comput. Oper. Res. 144, 105819 (2022). https://doi.org/10.1016/j.cor.2022.105819

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  23. Morin, T.L., Marsten, R.E.: Branch-and-bound strategies for dynamic programming. Oper. Res. 24(4), 611ā€“627 (1976)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  24. Ogorodnikov, Y., Rudakov, R., Khachay, D., Khachay, M.: A problem-specific branch-and-bound algorithm for the protected shortest simple path problem with must-pass nodes. IFAC-PapersOnLine 55, 572ā€“577 (2022). https://doi.org/10.1016/j.ifacol.2022.09.455

  25. Papadimitriou, C.: Euclidean TSP is NP-complete. Theor. Comput. Sci. 4, 237ā€“244 (1977)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  26. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40, 455ā€“472 (2006). https://doi.org/10.1287/trsc.1050.0135

    ArticleĀ  Google ScholarĀ 

  27. Saksena, J.P., Kumar, S.: The routing problem with ā€˜kā€™ specified nodes. Oper. Res. 14(5), 909ā€“913 (1966)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  28. Salman, R., Carlson, J.S., Ekstedt, F., Spensieri, D., Torstensson, J., Sƶderberg, R.: An industrially validated CMM inspection process with sequence constraints. Procedia CIRP 44, 138ā€“143 (2016). https://doi.org/10.1016/j.procir.2016.02.136

    ArticleĀ  Google ScholarĀ 

  29. Salman, R., Ekstedt, F., Damaschke, P.: Branch-and-bound for the precedence constrained generalized traveling salesman problem. Oper. Res. Lett. 48(2), 163ā€“166 (2020). https://doi.org/10.1016/j.orl.2020.01.009

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  30. Schilling, L., Seuring, S.: Linking the digital and sustainable transformation with supply chain practices. Int. J. Prod. Res. 1ā€“25 (2023). https://doi.org/10.1080/00207543.2023.2173502

  31. Smith, S.L., Imeson, F.: GLNS: an effective large neighborhood search heuristic for the generalized traveling salesman problem. Comput. Oper. Res. 87, 1ā€“19 (2017). https://doi.org/10.1016/j.cor.2017.05.010

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Acknowledgements

The work was performed as part of research carried out in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2023-913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Rudakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rudakov, R., Khachai, D., Ogorodnikov, Y., Khachay, M. (2023). Reliable Production Process Design Problem: Compact MILP Model andĀ ALNS-Based Primal Heuristic. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2023. Lecture Notes in Computer Science, vol 14395. Springer, Cham. https://doi.org/10.1007/978-3-031-47859-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47859-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47858-1

  • Online ISBN: 978-3-031-47859-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics