Abstract
Predicting salaries is crucial in business. While prediction models can be trained on large and real salary datasets, they typically lack information regarding professional experience, an essential factor for salary. We investigate various regression techniques for the estimation of professional experience based on data from the Socio-Economic Panel (SOEP) to augment data sets. We further show how to integrate such models into applications and evaluate the usefulness for salary prediction on a large real payroll dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
[4] builds on random forests, the current application is based on a neural network.
References
Aggarwal, C.C.: Data Mining: The Textbook. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8
Cheng, X., Khomtchouk, B., Matloff, N., Mohanty, P.: Polynomial Regression As an Alternative to Neural Nets. CoRR in arXiv abs/1806.06850 (2019). https://doi.org/10.48550/arXiv.1806.06850
DATEV eG: Personal-Benchmark online. https://datev.de/web/de/mydatev/online-anwendungen/datev-personal-benchmark-online/. Accessed 10 July 2023
Eichinger, F., Mayer, M.: Predicting salaries with random-forest regression. In: Alyoubi, B., N’Cir, C.B., Alharbi, I., Jarboui, A. (eds.) Machine Learning and Data Analytics for Solving Business Problems. Unsupervised and Semi-Supervised Learning, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18483-3_1
German Federal Office of Statistics: Gehaltsvergleich BETA. https://service.destatis.de/DE/gehaltsvergleich/. Accessed 10 July 2023
German Federal Office of Statistics: Interaktiver Gehaltsvergleich. https://www.destatis.de/DE/Service/Statistik-Visualisiert/Gehaltsvergleich/Methoden/Methodenbericht.pdf. Accessed 10 July 2023
Goebel, J., et al.: The German socio-economic panel (SOEP). Jahrbücher für Nationalökonomie und Statistik 239(2), 345–360 (2018). https://doi.org/10.1515/jbnst-2018-0022
Kiesel, J.: Prediction Models for Professional Experience. https://www.it-management.rw.fau.de/sgai/. Accessed 12 Sep 2023
Liebig, S. et al.: Socio-Economic Panel, data from 1984–2020 (SOEP-Core, v37, Onsite Edition) (2022). https://doi.org/10.5684/SOEP.CORE.V37O
Mincer, J.: Schooling, Experience, and Earnings. National Bureau of Economic Research (1974)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Eichinger, F., Kiesel, J., Dorner, M., Arnold, S. (2023). Estimations of Professional Experience with Panel Data to Improve Salary Predictions. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XL. SGAI 2023. Lecture Notes in Computer Science(), vol 14381. Springer, Cham. https://doi.org/10.1007/978-3-031-47994-6_46
Download citation
DOI: https://doi.org/10.1007/978-3-031-47994-6_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47993-9
Online ISBN: 978-3-031-47994-6
eBook Packages: Computer ScienceComputer Science (R0)