Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Estimations of Professional Experience with Panel Data to Improve Salary Predictions

  • Conference paper
  • First Online:
Artificial Intelligence XL (SGAI 2023)

Abstract

Predicting salaries is crucial in business. While prediction models can be trained on large and real salary datasets, they typically lack information regarding professional experience, an essential factor for salary. We investigate various regression techniques for the estimation of professional experience based on data from the Socio-Economic Panel (SOEP) to augment data sets. We further show how to integrate such models into applications and evaluate the usefulness for salary prediction on a large real payroll dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    [4] builds on random forests, the current application is based on a neural network.

References

  1. Aggarwal, C.C.: Data Mining: The Textbook. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8

  2. Cheng, X., Khomtchouk, B., Matloff, N., Mohanty, P.: Polynomial Regression As an Alternative to Neural Nets. CoRR in arXiv abs/1806.06850 (2019). https://doi.org/10.48550/arXiv.1806.06850

  3. DATEV eG: Personal-Benchmark online. https://datev.de/web/de/mydatev/online-anwendungen/datev-personal-benchmark-online/. Accessed 10 July 2023

  4. Eichinger, F., Mayer, M.: Predicting salaries with random-forest regression. In: Alyoubi, B., N’Cir, C.B., Alharbi, I., Jarboui, A. (eds.) Machine Learning and Data Analytics for Solving Business Problems. Unsupervised and Semi-Supervised Learning, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18483-3_1

    Chapter  Google Scholar 

  5. German Federal Office of Statistics: Gehaltsvergleich BETA. https://service.destatis.de/DE/gehaltsvergleich/. Accessed 10 July 2023

  6. German Federal Office of Statistics: Interaktiver Gehaltsvergleich. https://www.destatis.de/DE/Service/Statistik-Visualisiert/Gehaltsvergleich/Methoden/Methodenbericht.pdf. Accessed 10 July 2023

  7. Goebel, J., et al.: The German socio-economic panel (SOEP). Jahrbücher für Nationalökonomie und Statistik 239(2), 345–360 (2018). https://doi.org/10.1515/jbnst-2018-0022

    Article  Google Scholar 

  8. Kiesel, J.: Prediction Models for Professional Experience. https://www.it-management.rw.fau.de/sgai/. Accessed 12 Sep 2023

  9. Liebig, S. et al.: Socio-Economic Panel, data from 1984–2020 (SOEP-Core, v37, Onsite Edition) (2022). https://doi.org/10.5684/SOEP.CORE.V37O

  10. Mincer, J.: Schooling, Experience, and Earnings. National Bureau of Economic Research (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Eichinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eichinger, F., Kiesel, J., Dorner, M., Arnold, S. (2023). Estimations of Professional Experience with Panel Data to Improve Salary Predictions. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XL. SGAI 2023. Lecture Notes in Computer Science(), vol 14381. Springer, Cham. https://doi.org/10.1007/978-3-031-47994-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47994-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47993-9

  • Online ISBN: 978-3-031-47994-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics