Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Effect of Pseudo-Haptic Feedback on Weight Perception of Virtual Objects on the Computer Side

  • Conference paper
  • First Online:
HCI International 2023 – Late Breaking Papers (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14054))

Included in the following conference series:

  • 661 Accesses

Abstract

In this paper, we investigate the effect of mouse cursor visibility on pseudo-haptic weight perception on the computer side through a static control display ratio (C/D ratio) method and construct a pseudo-haptic weight perception prediction model for it under mouse interaction mode. Unlike the traditional dynamic C/D ratio approach, the static C/D ratio approach used in this paper can also evoke the same pseudo-haptic weight perception of the user. Also, the final results show that hiding the cursor image of the input device in the display can reduce the effect of the difference between object displacement and cursor displacement on the pseudo-haptic perception. To a certain extent, it is demonstrated that the pseudo-haptic weight perception can be induced by fatigue through hand work as opposed to the pseudo-haptic perception by visual illusion. The model provides interaction designers with some design references to enhance the immersive experience of users in the process of using computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ting, Z.: Research on the application of human-computer interaction interface design in product usability. Packag. Eng. 35(20), 63–66 (2014)

    Google Scholar 

  2. Yongliang, P.: Naturalistic trends in human-computer interaction interface design. ZHUANGSHI 06, 130–131 (2008)

    Google Scholar 

  3. Zichen, Z.: A Study of Natural Interaction Interface Design from the Perspective of Boosting Theory. Southeastern University (2021)

    Google Scholar 

  4. Xiaona, M., Qianqian, T., Yihan, L., Xukun, S.: Research on building haptic experience of intelligent design based on multimodal haptic and pseudo-haptic feedback. ZHUANGSHI 09, 28–33 (2022)

    Google Scholar 

  5. Lederman, S.J., Klatzky, R.L.: Haptic perception: a tutorial. Atten. Percept. Psychophys. 71(7), 1439–1459 (2009)

    Article  Google Scholar 

  6. Sathian, K.: Analysis of haptic information in the cerebral cortex. J. Neurophysiol. 116(4), 1795–1806 (2016)

    Article  Google Scholar 

  7. Si, C., Jianpeng, Z., Zhengchun, P., Jianning, D.: From sense of touch to tactile intelligence: thoughts from the 2021 Nobel prize in physiology or medicine. Chin. Sci. Bull. 67(06), 561–566 (2022)

    Article  Google Scholar 

  8. Peng, D.: Research on Force Haptic Modeling and Reproduction Methods for Mobile Terminals. Southeastern University (2016)

    Google Scholar 

  9. Bosman, I.D.V.: Using Binaural Audio for Inducing Intersensory Illusions to Create Illusory Tactile Feedback in Virtual Reality. University of Pretoria (2018)

    Google Scholar 

  10. Culbertson, H., Schorr, S.B., Okamura, A.M.: Haptics: the present and future of artificial touch sensation. Ann. Rev. Control Robot. Autonom. Syst. 1, 385–409 (2018)

    Article  Google Scholar 

  11. Ujitoko, Y., Ban, Y., Hirota, K.: Modulating fine roughness perception of vibrotactile textured surface using pseudo-haptic effect. IEEE Trans. Visual Comput. Graph. 25(5), 1981–1990 (2019)

    Article  Google Scholar 

  12. Ujitoko, Y., Ban, Y., Hirota, K.: Presenting static friction sensation at stick-slip transition using pseudo-haptic effect. In: 2019 IEEE World Haptics Conference (WHC), pp. 181–186. IEEE (2019)

    Google Scholar 

  13. Wang, D., Ohnishi, K., Xu, W.: Multimodal haptic display for virtual reality: a survey. IEEE Trans. Industr. Electron. 67(1), 610–623 (2019)

    Article  Google Scholar 

  14. Kang, N., Lee, S.: A meta-analysis of recent studies on haptic feedback enhancement in immersive-augmented reality. In: Proceedings of the 4th International Conference on Virtual Reality, pp. 3–9 (2018)

    Google Scholar 

  15. Bizley, J.K., Shinn-Cunningham, B.G., Lee, A.K.: Nothing is irrelevant in a noisy world: sensory illusions reveal obligatory within-and across-modality integration. J. Neurosci. 32(39), 13402–13410 (2012)

    Article  Google Scholar 

  16. Lécuyer, A., Coquillart, S., Kheddar, A., Richard, P., Coiffet, P.: Pseudo-haptic feedback: can isometric input devices simulate force feedback?. In: Proceedings IEEE Virtual Reality 2000 (Cat. No. 00CB37048), pp. 83–90. IEEE (2000)

    Google Scholar 

  17. Bi, W., Newport, J., Xiao, B.: Interaction between static visual cues and force-feedback on the perception of mass of virtual objects. In: Proceedings of the 15th ACM Symposium on Applied Perception, pp. 1–5 (2018)

    Google Scholar 

  18. Hirao, Y., Takala, T.M., Lécuyer, A.: Comparing motion-based versus controller-based pseudo-haptic weight sensations in VR. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 305–310. IEEE (2020)

    Google Scholar 

  19. Samad, M., Gatti, E., Hermes, A., Benko, H., Parise, C.: Pseudo-haptic weight: changing the perceived weight of virtual objects by manipulating control-display ratio. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2019)

    Google Scholar 

  20. Ota, Y., Ujitoko, Y., Ban, Y., Sakurai, S., Hirota, K.: Surface roughness judgment during finger exploration is changeable by visual oscillations. In: Nisky, I., Hartcher-O’Brien, J., Wiertlewski, M., Smeets, J. (eds.) EuroHaptics 2020. LNCS, vol. 12272, pp. 33–41. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58147-3_4

    Chapter  Google Scholar 

  21. Sato, Y., Hiraki, T., Tanabe, N., Matsukura, H., Iwai, D., Sato, K.: Modifying texture perception with pseudo-haptic feedback for a projected virtual hand interface. IEEE Access 8, 120473–120488 (2020)

    Article  Google Scholar 

  22. Kawabe, T.: Mid-air action contributes to pseudo-haptic stiffness effects. IEEE Trans. Haptics 13(1), 18–24 (2019)

    Article  Google Scholar 

  23. Li, M., et al.: Evaluation of pseudo-haptic interactions with soft objects in virtual environments. PLoS ONE 11(6), e0157681 (2016)

    Article  Google Scholar 

  24. Matsumoto, D., et al.: An immersive visuo-haptic VR environment with pseudo-haptic effects on perceived stiffness. In: Hasegawa, S., Konyo, M., Kyung, K., Nojima, T., Kajimoto, H. (eds.) AsiaHaptics 2016. LNEE, vol. 432, pp. 281–285. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-4157-0_48

    Chapter  Google Scholar 

  25. Ujitoko, Y., Ban, Y.: Survey of pseudo-haptics: Haptic feedback design and application proposals. IEEE Trans. Haptics 14(4), 699–711 (2021)

    Article  Google Scholar 

  26. Rietzler, M., Geiselhart, F., Gugenheimer, J., Rukzio, E.: Breaking the tracking: enabling weight perception using perceivable tracking offsets. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018)

    Google Scholar 

  27. Yu, R., Bowman, D.A.: Pseudo-haptic display of mass and mass distribution during object rotation in virtual reality. IEEE Trans. Visual Comput. Graph. 26(5), 2094–2103 (2020)

    Article  Google Scholar 

  28. Narumi, T., Ujitoko, Y., Ban, Y., Tanikawa, T., Hirota, K., Hirose, M.: Resistive swipe: visuo-haptic interaction during swipe gestures to scroll background images on touch interfaces. In: 2017 IEEE World Haptics Conference (WHC), pp. 334–339. IEEE (2017)

    Google Scholar 

  29. Hashimoto, T., Narumi, T., Nagao, R., Tanikawa, T., Hirose, M.: Effect of pseudo-haptic feedback on touchscreens on visual memory during image browsing. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10894, pp. 551–563. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93399-3_47

    Chapter  Google Scholar 

  30. Pusch, A., Lécuyer, A.: Pseudo-haptics: from the theoretical foundations to practical system design guidelines. In: Proceedings of the 13th International Conference on Multimodal Interfaces, pp. 57–64 (2011)

    Google Scholar 

  31. Lécuyer, A.: Simulating haptic feedback using vision: a survey of research and applications of pseudo-haptic feedback. Presence Teleoperators Virtual Environ. 18(1), 39–53 (2009)

    Google Scholar 

  32. Blanch, R., Guiard, Y., Beaudouin-Lafon, M.: Semantic pointing: improving target acquisition with control-display ratio adaptation. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 519–526 (2004)

    Google Scholar 

  33. Ahlström, D., Hitz, M., Leitner, G.: An evaluation of sticky and force enhanced targets in multi target situations. In: Proceedings of the 4th Nordic Conference on Human-Computer Interaction: Changing Roles, pp. 58–67 (2006)

    Google Scholar 

  34. Lécuyer, A., Burkhardt, J.M., Etienne, L.: Feeling bumps and holes without a haptic interface: the perception of pseudo-haptic textures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 239–246 (2004)

    Google Scholar 

  35. Ban, Y., Kajinami, T., Narumi, T., Tanikawa, T., Hirose, M.: Modifying an identified curved surface shape using pseudo-haptic effect. In: 2012 IEEE Haptics Symposium (HAPTICS), pp. 211–216. IEEE (2012)

    Google Scholar 

  36. Ban, Y., Ujitoko, Y.: Enhancing the pseudo-haptic effect on the touch panel using the virtual string. In: 2018 IEEE Haptics Symposium (HAPTICS), pp. 278–283. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Qian, F. (2023). The Effect of Pseudo-Haptic Feedback on Weight Perception of Virtual Objects on the Computer Side. In: Kurosu, M., et al. HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14054. Springer, Cham. https://doi.org/10.1007/978-3-031-48038-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48038-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48037-9

  • Online ISBN: 978-3-031-48038-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics