Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Glide Ratio Optimization for Wind Turbine Airfoils Based on Genetic Algorithms

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2023 (IDEAL 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14404))

  • 712 Accesses

Abstract

The main objective in the design of wind turbine blades is the use of suitable airfoils to increase the aerodynamic performance and decrease the cost of energy. The objective of this research is to employ numerical optimization techniques to develop airfoils for wind turbines. To achieve this objective, a mathematical model is formulated by combining genetic algorithms with the XFOIL flow solver. Three different airfoils with different characteristics are created using the genetic algorithm. Throughout the optimization procedure, XFOIL software is used to determine the lift and drag coefficients. This study confirms the feasibility and effectiveness of the innovative design approach. Furthermore, it provides a valuable design concept that can be effectively applied to the airfoils of medium-thickness wind turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashir, M.B.A.: Principle parameters and environmental impacts that affect the performance of wind turbine: an overview. Arabian J. Sci. Eng. 47, 7891–7909 (2021). https://doi.org/10.1007/s13369-021-06357-1

    Article  Google Scholar 

  2. Radi, J., et al.: Design And Simulation of a Small Horizontal Wind Turbine Using MATLAB and XFOIL. In: WWME 2022 IV. Jardunaldia-Berrikuntza eta irakaskuntza energia berriztagarrien aurrerapenetan. Argitalpen Zerbitzua (2023)

    Google Scholar 

  3. Radi, J., Djebli, A.: Optimal design of an horizontal axis wind turbine using blade element momentum theory. E3S Web Conf. 336, 00008 (2022). https://doi.org/10.1051/e3sconf/202233600008

    Article  Google Scholar 

  4. Grasso, F.: Usage of numerical optimization in wind turbine airfoil design. J. Aircraft 48(1), 248–255 (2011)

    Article  Google Scholar 

  5. Chen, J., Wang, Q., Zhang, S., Eecen, P., Grasso, F.: A new direct design method of wind turbine airfoils and wind tunnel experiment. Appl. Math. Model. 40(3), 2002–2014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ziemkiewicz, D.: Simple analytic equation for airfoil shape description. arXiv preprint arXiv:1701.00817 (2016)

    Google Scholar 

  7. Wang, Q., Huang, P., Gan, D., Wang, J.: Integrated design of aerodynamic performance and structural characteristics for medium thickness wind turbine airfoil. Appl. Sci. 9(23), 5243 (2019)

    Article  Google Scholar 

  8. Yin, R., Xie, J.-B., Yao, J.: Optimal design and aerodynamic performance prediction of a horizontal axis small-scale wind turbine. Math. Probl. Eng. 2022, 1–19 (2022). https://doi.org/10.1155/2022/3947164

    Article  Google Scholar 

  9. Bizzarrini, N., Grasso, F., Coiro, D.P.: Genetic algorithms in wind turbine airfoil design. EWEA, EWEC2011, Bruxelles, Belgium, 14 (2011)

    Google Scholar 

  10. Ram, K.R., Lal, S.P., Ahmed, M.R.: Design and optimization of airfoils and a 20 kW wind turbine using multi-objective genetic algorithm and HARP_Opt code. Renew. Energy 144, 56–67 (2019)

    Article  Google Scholar 

  11. Olivares, I., Santos, M., Tomás Rodríguez, M.: Análisis para el diseño de las palas de una turbina marina. In: XXXIX Jornadas de Automática, pp. 430–435. Área de Ingeniería de Sistemas y Automática, Universidad de Extremadura (2018)

    Google Scholar 

  12. Lillo, D., Santos, M., Esteban, S., López, R., Guiijarro, M.: Modelización, simulación y evaluación técnico-económica de una turbina de mar. In: XL Jornadas de Automática, pp. 24–31. Universidade da Coruña, Servizo de Publicacións (2019)

    Google Scholar 

  13. Wang, X., Wang, L., Xia, H.: An integrated method for designing airfoils shapes. Math. Problems Eng. 2015, 1–12 (2015). https://doi.org/10.1155/2015/838674

    Article  Google Scholar 

  14. Hajek, J.: Parameterization of airfoils and its application in aerodynamic optimization. WDS 7, 233–240 (2007)

    Google Scholar 

  15. Galletly, J.: An overview of genetic algorithms. Kybernetes 21(6), 26–30 (1992)

    Article  Google Scholar 

  16. Zheng, Y., et al.: Optimization problems and algorithms. Biogeography-Based Optimization: Algorithms and Applications, 1–25 (2019)

    Google Scholar 

  17. Abajo, M.R., Enrique Sierra-García, J., Santos, M.: Evolutive tuning optimization of a PID controller for autonomous path-following robot. In: González, H.S., López, I.P., Bringas, P.G., Quintián, H., Corchado, E. (eds.) SOCO 2021. AISC, vol. 1401, pp. 451–460. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87869-6_43

    Chapter  Google Scholar 

  18. Bayona, E., Sierra-García, J.E., Santos, M.: Optimization of trajectory generation for automatic guided vehicles by genetic algorithms. In: Bringas, P.G., et al. (eds.) 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022): Salamanca, Spain, 5–7 Sep 2022, Proceedings, pp. 484–492. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-18050-7_47

    Chapter  Google Scholar 

  19. Serrano, C., Sierra-Garcia, J.E., Santos, M.: Hybrid optimized fuzzy pitch controller of a floating wind turbine with fatigue analysis. J. Marine Sci. Eng. 10(11), 1769 (2022)

    Article  Google Scholar 

  20. Drela, M.: XFOIL: An analysis and design system for low Reynolds number airfoils. In: Low Reynolds Number Aerodynamics: Proceedings of the Conference Notre Dame, Indiana, USA, 5–7 June 1989, pp. 1-12. Springer Berlin Heidelberg, Berlin, Heidelberg (1989)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Spanish Ministry of Science and Innovation under project MCI/AEI/FEDER number PID2021-123543OBC21.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinane Radi or Jesús Enrique Sierra-Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radi, J., Djebli, A., Sierra-Garcia, J.E., Santos, M. (2023). Glide Ratio Optimization for Wind Turbine Airfoils Based on Genetic Algorithms. In: Quaresma, P., Camacho, D., Yin, H., Gonçalves, T., Julian, V., Tallón-Ballesteros, A.J. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2023. IDEAL 2023. Lecture Notes in Computer Science, vol 14404. Springer, Cham. https://doi.org/10.1007/978-3-031-48232-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48232-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48231-1

  • Online ISBN: 978-3-031-48232-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics