Abstract
The main objective in the design of wind turbine blades is the use of suitable airfoils to increase the aerodynamic performance and decrease the cost of energy. The objective of this research is to employ numerical optimization techniques to develop airfoils for wind turbines. To achieve this objective, a mathematical model is formulated by combining genetic algorithms with the XFOIL flow solver. Three different airfoils with different characteristics are created using the genetic algorithm. Throughout the optimization procedure, XFOIL software is used to determine the lift and drag coefficients. This study confirms the feasibility and effectiveness of the innovative design approach. Furthermore, it provides a valuable design concept that can be effectively applied to the airfoils of medium-thickness wind turbines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bashir, M.B.A.: Principle parameters and environmental impacts that affect the performance of wind turbine: an overview. Arabian J. Sci. Eng. 47, 7891–7909 (2021). https://doi.org/10.1007/s13369-021-06357-1
Radi, J., et al.: Design And Simulation of a Small Horizontal Wind Turbine Using MATLAB and XFOIL. In: WWME 2022 IV. Jardunaldia-Berrikuntza eta irakaskuntza energia berriztagarrien aurrerapenetan. Argitalpen Zerbitzua (2023)
Radi, J., Djebli, A.: Optimal design of an horizontal axis wind turbine using blade element momentum theory. E3S Web Conf. 336, 00008 (2022). https://doi.org/10.1051/e3sconf/202233600008
Grasso, F.: Usage of numerical optimization in wind turbine airfoil design. J. Aircraft 48(1), 248–255 (2011)
Chen, J., Wang, Q., Zhang, S., Eecen, P., Grasso, F.: A new direct design method of wind turbine airfoils and wind tunnel experiment. Appl. Math. Model. 40(3), 2002–2014 (2016)
Ziemkiewicz, D.: Simple analytic equation for airfoil shape description. arXiv preprint arXiv:1701.00817 (2016)
Wang, Q., Huang, P., Gan, D., Wang, J.: Integrated design of aerodynamic performance and structural characteristics for medium thickness wind turbine airfoil. Appl. Sci. 9(23), 5243 (2019)
Yin, R., Xie, J.-B., Yao, J.: Optimal design and aerodynamic performance prediction of a horizontal axis small-scale wind turbine. Math. Probl. Eng. 2022, 1–19 (2022). https://doi.org/10.1155/2022/3947164
Bizzarrini, N., Grasso, F., Coiro, D.P.: Genetic algorithms in wind turbine airfoil design. EWEA, EWEC2011, Bruxelles, Belgium, 14 (2011)
Ram, K.R., Lal, S.P., Ahmed, M.R.: Design and optimization of airfoils and a 20 kW wind turbine using multi-objective genetic algorithm and HARP_Opt code. Renew. Energy 144, 56–67 (2019)
Olivares, I., Santos, M., Tomás Rodríguez, M.: Análisis para el diseño de las palas de una turbina marina. In: XXXIX Jornadas de Automática, pp. 430–435. Área de Ingeniería de Sistemas y Automática, Universidad de Extremadura (2018)
Lillo, D., Santos, M., Esteban, S., López, R., Guiijarro, M.: Modelización, simulación y evaluación técnico-económica de una turbina de mar. In: XL Jornadas de Automática, pp. 24–31. Universidade da Coruña, Servizo de Publicacións (2019)
Wang, X., Wang, L., Xia, H.: An integrated method for designing airfoils shapes. Math. Problems Eng. 2015, 1–12 (2015). https://doi.org/10.1155/2015/838674
Hajek, J.: Parameterization of airfoils and its application in aerodynamic optimization. WDS 7, 233–240 (2007)
Galletly, J.: An overview of genetic algorithms. Kybernetes 21(6), 26–30 (1992)
Zheng, Y., et al.: Optimization problems and algorithms. Biogeography-Based Optimization: Algorithms and Applications, 1–25 (2019)
Abajo, M.R., Enrique Sierra-García, J., Santos, M.: Evolutive tuning optimization of a PID controller for autonomous path-following robot. In: González, H.S., López, I.P., Bringas, P.G., Quintián, H., Corchado, E. (eds.) SOCO 2021. AISC, vol. 1401, pp. 451–460. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87869-6_43
Bayona, E., Sierra-García, J.E., Santos, M.: Optimization of trajectory generation for automatic guided vehicles by genetic algorithms. In: Bringas, P.G., et al. (eds.) 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022): Salamanca, Spain, 5–7 Sep 2022, Proceedings, pp. 484–492. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-18050-7_47
Serrano, C., Sierra-Garcia, J.E., Santos, M.: Hybrid optimized fuzzy pitch controller of a floating wind turbine with fatigue analysis. J. Marine Sci. Eng. 10(11), 1769 (2022)
Drela, M.: XFOIL: An analysis and design system for low Reynolds number airfoils. In: Low Reynolds Number Aerodynamics: Proceedings of the Conference Notre Dame, Indiana, USA, 5–7 June 1989, pp. 1-12. Springer Berlin Heidelberg, Berlin, Heidelberg (1989)
Acknowledgments
This work has been partially supported by the Spanish Ministry of Science and Innovation under project MCI/AEI/FEDER number PID2021-123543OBC21.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Radi, J., Djebli, A., Sierra-Garcia, J.E., Santos, M. (2023). Glide Ratio Optimization for Wind Turbine Airfoils Based on Genetic Algorithms. In: Quaresma, P., Camacho, D., Yin, H., Gonçalves, T., Julian, V., Tallón-Ballesteros, A.J. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2023. IDEAL 2023. Lecture Notes in Computer Science, vol 14404. Springer, Cham. https://doi.org/10.1007/978-3-031-48232-8_47
Download citation
DOI: https://doi.org/10.1007/978-3-031-48232-8_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48231-1
Online ISBN: 978-3-031-48232-8
eBook Packages: Computer ScienceComputer Science (R0)