Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Classification of Offensive Tweet in Marathi Language Using Machine Learning Models

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2023)

Abstract

Offensive language identification is essential to make social media a safe and clean place to share one’s view. In this work, a model is proposed to automatically classify offensive tweets into offensive and not offensive classes of low-resource language. Marathi is spoken in Western India. Marathi being a low-resource language, lacks a comprehensive list of stopwords and proper stammer. To fill this gap, we created a list of stopwords for stopword removal and a list of suffixes to identify the root word in the Marathi language. Two different methods, Label Vectorizer and term frequency-inverse document frequency (TF-IDF) Vectorizer, are used to extract features from the text and then these features are used with six different conventional machine learning classifiers to classify a Marathi tweet into offensive or non-offensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://hasocfire.github.io/hasoc/2022/dataset.html.

References

  1. Athiwaratkun, B., Wilson, A.G., Anandkumar, A.: Probabilistic fasttext for multi-sense word embeddings. arXiv preprint arXiv:1806.02901 (2018)

  2. Baruah, A., Das, K.A., Barbhuiya, F.A., Dey, K.: Iiitg-adbu@ hasoc-dravidian-codemix-fire2020: Offensive content detection in code-mixed Dravidian text. arXiv preprint arXiv:2107.14336 (2021)

  3. Das, A., Wahi, J.S., Li, S.: Detecting hate speech in multi-modal memes. arXiv preprint arXiv:2012.14891 (2020)

  4. Frakes, W.B., Baeza-Yates, R.: Information retrieval: data structures and algorithms. Prentice-Hall, Inc. (1992)

    Google Scholar 

  5. Frakes, W.B., Fox, C.J.: Strength and similarity of affix removal stemming algorithms. In: ACM SIGIR Forum, vol. 37, pp. 26–30. ACM, New York(2003)

    Google Scholar 

  6. Gaikwad, S., Ranasinghe, T., Zampieri, M., Homan, C.M.: Cross-lingual offensive language identification for low resource languages: The case of Marathi. arXiv preprint arXiv:2109.03552 (2021)

  7. Gajbhiye, D., Deshpande, S., Ghante, P., Kale, A., Chaudhari, D.: Machine learning models for hate speech identification in Marathi language. In: Forum for Information Retrieval Evaluation (Working Notes)(FIRE), CEUR-WS. org (2021)

    Google Scholar 

  8. Giri, V., et al.: Mtstemmer: a multilevel stemmer for effective word pre-processing in Marathi. Turkish J. Comput. Mathem. Educ. (TURCOMAT) 12(2), 1885–1894 (2021)

    Article  Google Scholar 

  9. Jogin, M., Madhulika, M., Divya, G., Meghana, R., Apoorva, S., et al.: Feature extraction using convolution neural networks (CNN) and deep learning. In: 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 2319–2323. IEEE (2018)

    Google Scholar 

  10. Kumar, G., Singh, J.P., Kumar, A.: A deep multi-modal neural network for the identification of hate speech from social media. In: Conference on e-Business, e-Services and e-Society, pp. 670–680. Springer (2021)

    Google Scholar 

  11. Kumari, K., Singh, J.P.: Identification of cyberbullying on multi-modal social media posts using genetic algorithm. Trans. Emerging Telecommun. Technol. 32(2), e3907 (2021)

    Article  Google Scholar 

  12. Kumari, K., Singh, J.P., Dwivedi, Y.K., Rana, N.P.: Multi-modal aggression identification using convolutional neural network and binary particle swarm optimization. Futur. Gener. Comput. Syst. 118, 187–197 (2021)

    Article  Google Scholar 

  13. Kumari, K., Singh, J.P., Dwivedi, Y.K., Rana, N.P.: Towards cyberbullying-free social media in smart cities: a unified multi-modal approach. Soft. Comput. 24(15), 11059–11070 (2020)

    Article  Google Scholar 

  14. Kuyumcu, B., Aksakalli, C., Delil, S.: An automated new approach in fast text classification (fasttext) a case study for Turkish text classification without pre-processing. In: Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval, pp. 1–4 (2019)

    Google Scholar 

  15. Pathak, V., Joshi, M., Joshi, P., Mundada, M., Joshi, T.: Kbcnmujal@ hasoc-dravidian-codemix-fire2020: using machine learning for detection of hate speech and offensive code-mixed social media text. arXiv preprint arXiv:2102.09866 (2021)

  16. Patil, H.B., Pawar, B., Patil, A.S.: A comprehensive analysis of stemmers available for indic languages. Int. J. Nat. Lang. Comput 5(1), 45–55 (2016)

    Article  Google Scholar 

  17. Patil, R.S., Kolhe, S.R.: Inflectional and derivational hybrid stemmer for sentiment analysis: a case study with Marathi tweets. In: International Conference on Recent Trends in Image Processing and Pattern Recognition, pp. 263–279. Springer (2022). https://doi.org/10.1007/978-3-031-07005-1_23

  18. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  19. Prajitha, U., Sreejith, C., Raj, P.R.: Lalitha: a lightweight Malayalam stemmer using the suffix stripping method. In: 2013 International Conference on Control Communication and Computing (ICCC), pp. 244–248. IEEE (2013)

    Google Scholar 

  20. Saharia, N., Konwar, K.M., Sharma, U., Kalita, J.K.: An improved stemming approach using HMM for a highly inflectional language. In: Gelbukh, A. (ed.) CICLing 2013. LNCS, vol. 7816, pp. 164–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37247-6_14

    Chapter  Google Scholar 

  21. Saumya, S., Kumar, A., Singh, J.P.: Offensive language identification in Dravidian code mixed social media text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages, pp. 36–45 (2021)

    Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  23. Sreelakshmi, K., Premjith, B., Soman, K.: Detection of hate speech text in Hindi-English code-mixed data. Proc. Comput. Sci. 171, 737–744 (2020)

    Article  Google Scholar 

  24. Swaminathan, S., Ganesan, H.K., Pandiyarajan, R.: Hrs-techie@ dravidian-codemix and hasoc-fire2020: sentiment analysis and hate speech identification using machine learning deep learning and ensemble models. In: FIRE (Working Notes), pp. 241–252 (2020)

    Google Scholar 

  25. Velankar, A., Patil, H., Gore, A., Salunke, S., Joshi, R.: Hate and offensive speech detection in Hindi and Marathi. arXiv preprint arXiv:2110.12200 (2021)

  26. Velankar, A., Patil, H., Gore, A., Salunke, S., Joshi, R.: L3cube-mahahate: a tweet-based Marathi hate speech detection dataset and BERT models. arXiv preprint arXiv:2203.13778 (2022)

  27. Zhang, W.: Neural dependency parsing of low-resource languages: a case study on Marathi (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumari, A., Garge, A., Raj, P., Kumar, G., Singh, J.P., Alryalat, M. (2024). Classification of Offensive Tweet in Marathi Language Using Machine Learning Models. In: Dasgupta, K., Mukhopadhyay, S., Mandal, J.K., Dutta, P. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2023. Communications in Computer and Information Science, vol 1955. Springer, Cham. https://doi.org/10.1007/978-3-031-48876-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48876-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48875-7

  • Online ISBN: 978-3-031-48876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics