Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Classification of Text and Non-text Components Present in Offline Unconstrained Handwritten Documents Using Convolutional Neural Network

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2023)

Abstract

Identification of text parts and non-text parts present in offline unconstrained handwritten manuscripts is an essential step toward the construction of an effective optical character recognition (OCR) system. To address the said issue researchers mostly extracted handcrafted features which capture the texture information in order to recognize text or non-text components separately. In presence of noise, these types of feature descriptors badly suffer. Therefore, in this paper, a Convolutional Neural Network (CNN) is designed to separate these extracted components. To evaluate the developed model, an in-house dataset of 150 pages is created. In this dataset, the present model has achieved 85.07% accuracy. The performance of the present model is compared with three recent works where it has outperformed these existing works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhowmik, S., Sarkar, R., Nasipuri, M., Doermann, D.: Text and non-text separation in offline document images: a survey. Int. J. Doc. Anal. Recognit. 21(1–2), 1–20 (2018)

    Article  Google Scholar 

  2. Bhowmik, S., Kundu, S., Sarkar, R.: BINYAS: a complex document layout analysis system. Multimed. Tools Appl., 8471–8504 (2020). https://doi.org/10.1007/s11042-020-09832-3

  3. Ghosh, S., Hassan, S.K., Khan, A.H., Manna, A., Bhowmik, S., Sarkar, R.: Application of texture-based features for text non-text classification in printed document images with novel feature selection algorithm. Soft. Comput. 26(2), 891–909 (2022)

    Article  Google Scholar 

  4. Oyedotun, O.K., Khashman, A.: Document segmentation using textural features summarization and feedforward neural network. Appl. Intell., 1–15 (2016)

    Google Scholar 

  5. Sah, A.K., Bhowmik, S., Malakar, S., Sarkar, R., Kavallieratou, E., Vasilopoulos, N.: Text and non-Text recognition using modified HOG descriptor. In: 2017 IEEE Calcutta Conference, CALCON 2017 - Proceedings, 2018, vol. 2018-Janua, pp. 64–68. https://doi.org/10.1109/CALCON.2017.8280697

  6. Augusto Borges Oliveira, D., Palhares Viana, M.: Fast CNN-based document layout analysis. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1173–1180 (2017)

    Google Scholar 

  7. Khan, T., Mollah, A.F.: AUTNT - a component level dataset for text non-text classification and benchmarking with novel script invariant feature descriptors and D-CNN. Multimed. Tools Appl. 78(22), 32159–32186 (2019). https://doi.org/10.1007/s11042-019-08028-8

    Article  Google Scholar 

  8. Bhowmik, S., Sarkar, R., Nasipuri, M.: Text and non-text separation in handwritten document images using local binary pattern operator, vol. 458 (2017)

    Google Scholar 

  9. Ghosh, S., Lahiri, D., Bhowmik, S., Kavallieratou, E., Sarkar, R.: Text/non-text separation from handwritten document images using LBP based features: an empirical study. J. Imaging 4(4), 57 (2018)

    Article  Google Scholar 

  10. Ghosh, M., Ghosh, K.K., Bhowmik, S., Sarkar, R.: Coalition game based feature selection for text non-text separation in handwritten documents using LBP based features. Multimed. Tools Appl., 1–21 (2020)

    Google Scholar 

  11. Bhowmik, S., Kundu, S., De, B.K., Sarkar, R., Nasipuri, M.: A two-stage approach for text and non-text separation from handwritten scientific document images. In: Advances in Intelligent Systems and Computing, 2019, vol. 699. https://doi.org/10.1007/978-981-10-7590-23

  12. Bhowmik, S., Sarkar, R., Das, B., Doermann, D.: GiB: a game theory inspired binarization technique for degraded document images. IEEE Trans. Image Process. 28(3) (2019). https://doi.org/10.1109/TIP.2018.2878959

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Showmik Bhowmik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarkar, B., Risat, S., Laha, A., Pattanayak, S., Bhowmik, S. (2024). Classification of Text and Non-text Components Present in Offline Unconstrained Handwritten Documents Using Convolutional Neural Network. In: Dasgupta, K., Mukhopadhyay, S., Mandal, J.K., Dutta, P. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2023. Communications in Computer and Information Science, vol 1955. Springer, Cham. https://doi.org/10.1007/978-3-031-48876-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48876-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48875-7

  • Online ISBN: 978-3-031-48876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics