Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dimension Reduction in Hyperspectral Image Using Single Layer Perceptron Neural Network

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2023)

Abstract

Hundreds of continuous bands make up a hyperspectral image. All the bands are not equal important. Some of the bands are significant and others are redundant. Band reduction is a typical step before further processing. Instead of attempting to handle the complete information set without losing crucial data, it is essential to select the most valuable bands. Using traditional band selection techniques, the predetermined number of dimensions are selected from the hyperspectral image. In this article, we propose a novel single-layer neural network and a genetic evolutionary approach to reduce a hyperspectral image’s high dimension. The process involves selecting the two bands with the lowest correlation in each iteration and eliminating two redundant bands. The suggested framework eliminates the unnecessary bands from a hyperspectral image and then chooses the ideal number of the most crucial bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal, A., El-Ghazawi, T., El-Askary, H., Le-Moigne, J.: Efficient hierarchical-PCA dimension reduction for hyperspectral imagery. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, pp. 353–356 (2007)

    Google Scholar 

  • Ahmad, M., Khan, A.M., Brown, J.A., Protasov, S., Khattak, A.M.: Gait fingerprinting-based user identification on smartphones. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3060–3067 (2016a)

    Google Scholar 

  • Ahmad, M., Khan, A.M., Hussain, R., Protasov, S., Chow, F., Khattak, A.M.: Unsupervised geometrical feature learning from hyperspectral data. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6 (2016b)

    Google Scholar 

  • Ahmad, M., Protasov, S., Khan, A.: Hyperspectral band selection using unsupervised non-linear deep auto encoder to train external classifiers. Unknown (2017)

    Google Scholar 

  • Ahmad, M., Ulhaq, D., Mushtaq, Q.: AIK method for band clustering using statistics of correlation and dispersion matrix, pp. 114–118 (2011)

    Google Scholar 

  • Brown, A., Sutter, B., Dunagan, S.: The MARTE VNIR imaging spectrometer experiment: design and analysis. Astrobiology 8, 1001–11 (2008)

    Article  Google Scholar 

  • Chang, C.-I.: Techniques for spectral detection and classification. In: Hyperspectral Imaging (2003)

    Google Scholar 

  • Chang, C.-I., Du, Q.: Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 42(3), 608–619 (2004)

    Article  Google Scholar 

  • Chang, C.-I., Wang, S.: Constrained band selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 44(6), 1575–1585 (2006)

    Article  Google Scholar 

  • Hidalgo, D.R., Cortés, B.B., Bravo, E.C.: Dimensionality reduction of hyperspectral images of vegetation and crops based on self-organized maps. Inf. Process. Agric. 8(2), 310–327 (2021)

    Google Scholar 

  • Du, Q., Yang, H.: Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 5(4), 564–568 (2008)

    Article  Google Scholar 

  • Estevez, P.A., Tesmer, M., Perez, C.A., Zurada, J.M.: Normalized mutual information feature selection. IEEE Trans. Neural Networks 20(2), 189–201 (2009)

    Article  Google Scholar 

  • Mathieu, F., Jocelyn, C., Benediktsson, J.A.: Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. EURASIP J. Adv. Signal Process. 2009, 783194 (2009)

    Article  Google Scholar 

  • Feng, J., Jiao, L.C., Zhang, X., Sun, T.: Hyperspectral band selection based on trivariate mutual information and clonal selection. IEEE Trans. Geosci. Remote Sens. 52(7), 4092–4105 (2014)

    Article  Google Scholar 

  • Gustavsson, D., Wadströmer, N.: Non-linear hyperspectral subspace mapping using stacked auto-encoder (2016)

    Google Scholar 

  • He, X., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood preserving embedding. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, 2, pp. 1208–1213 (2005)

    Google Scholar 

  • Ifarraguerri, A., Prairie, M.: Visual method for spectral band selection. IEEE Geosci. Remote Sens. Lett. 1(2), 101–106 (2004)

    Article  Google Scholar 

  • Feng, J., Licheng Jiao, F.L.T.S.X.Z.: Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images. Pattern Recogn. 51, 295–309 (2016)

    Article  Google Scholar 

  • Kanning, M., Siegmann, B., Jarmer, T.: Regionalization of uncovered agricultural soils based on organic carbon and soil texture estimations. Remote Sens. 8(11), 927 (2016)

    Article  Google Scholar 

  • Karaca, A.C., Güllü, M.K.: Comparison of traditional and recent unsupervised band selection approaches in hyperspectral images. In: 2016 24th Signal Processing and Communication Application Conference (SIU), pp. 785–788 (2016)

    Google Scholar 

  • Li, W., Prasad, S., Fowler, J.E., Bruce, L.M.: Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 8(5), 894–898 (2011)

    Article  Google Scholar 

  • Li, W., Prasad, S., Fowler, J.E., Bruce, L.M.: Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 50(4), 1185–1198 (2012)

    Article  Google Scholar 

  • Liu, L., Li, C.F., Lei, Y.M., et al.: Feature extraction for hyperspectral remote sensing image using weighted PCA-ICA, vol. 10 (2017)

    Google Scholar 

  • MartÍnez-UsÓMartinez-Uso, A., Pla, F., Sotoca, J.M., GarcÍa-Sevilla, P.: Clustering-based hyperspectral band selection using information measures. IEEE Trans. Geosci. Remote Sens. 45(12), 4158–4171 (2007)

    Article  Google Scholar 

  • Nahr, S.T., Pahlavani, P., Hasanlou, M.: Different optimal band selection of hyperspectral images using a continuous genetic algorithm. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(2), 249 (2014)

    Article  Google Scholar 

  • Nakamura, R.Y.M., Fonseca, L.M.G., dos Santos, J.A., da S. Torres, R., Yang, X.-S., Papa, J.P.: Nature-inspired framework for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 52(4), 2126–2137 (2014)

    Google Scholar 

  • Patra, S., Modi, P., Bruzzone, L.: Hyperspectral band selection based on rough set. IEEE Trans. Geosci. Remote Sens. 53(10), 5495–5503 (2015)

    Article  Google Scholar 

  • Paul Arati, C.N.: Dimensionality reduction of hyperspectral images using pooling. Pattern Recognit Image Anal. 29, 72–78 (2019)

    Article  Google Scholar 

  • Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–6 (2000)

    Article  Google Scholar 

  • Shuaibu, M., Lee, W.S., Schueller, J., Gader, P., Hong, Y.K., Kim, S.: Unsupervised hyperspectral band selection for apple Marssonina blotch detection. Comput. Electron. Agric. 148, 45–53 (2018)

    Article  Google Scholar 

  • Shukla, U.P., Nanda, S.J.: A binary social spider optimization algorithm for unsupervised band selection in compressed hyperspectral images. Expert Syst. Appl. 97, 336–356 (2018)

    Article  Google Scholar 

  • Solorio-Fernández, S., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F.: Hybrid feature selection method for supervised classification based on Laplacian score ranking. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. LNCS, vol. 6256, pp. 260–269. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15992-3_28

    Chapter  Google Scholar 

  • Su, H., Du, Q., Chen, G., Du, P.: Optimized hyperspectral band selection using particle swarm optimization. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(6), 2659–2670 (2014)

    Article  Google Scholar 

  • Su, H., Yong, B., Du, Q.: Hyperspectral band selection using improved firefly algorithm. IEEE Geosci. Remote Sens. Lett. 13(1), 68–72 (2016)

    Article  Google Scholar 

  • Wang, Q., Meng, Z., Li, X.: Locality adaptive discriminant analysis for spectral-spatial classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 14(11), 2077–2081 (2017)

    Article  Google Scholar 

  • Xie, F., Li, F., Lei, C., Yang, J., Zhang, Y.: Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification. Appl. Soft Comput. 75, 428–440 (2019)

    Article  Google Scholar 

  • Yang, H., Du, Q., Su, H., Sheng, Y.: An efficient method for supervised hyperspectral band selection. IEEE Geosci. Remote Sens. Lett. 8(1), 138–142 (2011)

    Article  Google Scholar 

  • Yang, R., Su, L., Zhao, X., Wan, H., Sun, J.: Representative band selection for hyperspectral image classification. J. Vis. Commun. Image Represent. 48, 396–403 (2017)

    Article  Google Scholar 

  • Yuan, Y., Zhu, G., Wang, Q.: Hyperspectral band selection by multitask sparsity pursuit. IEEE Trans. Geosci. Remote Sens. 53(2), 631–644 (2015)

    Article  Google Scholar 

  • Zhang, L., Zhong, Y., Huang, B., Gong, J., Li, P.: Dimensionality reduction based on clonal selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 45(12), 4172–4186 (2007)

    Article  Google Scholar 

  • Zhang, Y., Desai, M., Zhang, J., Jin, M.: Adaptive subspace decomposition for hyperspectral data dimensionality reduction. In: Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), vol. 2, pp. 326–329 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bar, R.K., Mukhopadhyay, S., Chakraborty, D., Hinchey, M. (2024). Dimension Reduction in Hyperspectral Image Using Single Layer Perceptron Neural Network. In: Dasgupta, K., Mukhopadhyay, S., Mandal, J.K., Dutta, P. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2023. Communications in Computer and Information Science, vol 1955. Springer, Cham. https://doi.org/10.1007/978-3-031-48876-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48876-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48875-7

  • Online ISBN: 978-3-031-48876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics