Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fair Division with Allocator’s Preference

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14413))

Included in the following conference series:

Abstract

We consider the problem of fairly allocating indivisible resources to agents, which has been studied for years. Most previous work focuses on fairness and/or efficiency among agents given agents’ preferences. However, besides the agents, the allocator as the resource owner may also be involved in many real-world scenarios (e.g., government resource allocation, heritage division, company personnel assignment, etc.). The allocator has the inclination to obtain a fair or efficient allocation based on her own preference over the items and to whom each item is allocated. In this paper, we propose a new model and focus on the following two problems concerning the allocator’s fairness and efficiency:

  1. 1.

    Is it possible to find an allocation that is fair for both the agents and the allocator?

  2. 2.

    What is the complexity of maximizing the allocator’s social welfare while satisfying the agents’ fairness?

We consider the two fundamental fairness criteria: envy-freeness and proportionality. For the first problem, we study the existence of an allocation that is envy-free up to c goods (EF-c) or proportional up to c goods (PROP-c) from both the agents’ and the allocator’s perspectives, in which such an allocation is called doubly EF-c or doubly PROP-c respectively. When the allocator’s utility depends exclusively on the items (but not to whom an item is allocated), we prove that a doubly EF-1 allocation always exists. For the general setting where the allocator has a preference over the items and to whom each item is allocated, we prove that a doubly EF-1 allocation always exists for two agents, a doubly PROP-2 allocation always exists for binary valuations, and a doubly PROP-\(O(\log n)\) allocation always exists in general.

For the second problem, we provide various (in)approximability results in which the gaps between approximation and inapproximation ratios are asymptotically closed under most settings.

Most of our results are based on some novel technical tools including the chromatic numbers of the Kneser graphs and linear programming-based analysis.

The full version of this paper is available on arXiv [11]. Due to the space limit, many technical details are omitted in this version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The round-robin algorithm works as follows: Given an ordering of agents, each agent picks her favorite item among the remaining items to her bundle following the ordering in rounds until there is no remaining item.

References

  1. Amanatidis, G., et al.: Fair division of indivisible goods: recent progress and open questions. Artif. Intell. 103965 (2023)

    Google Scholar 

  2. Aziz, H.: Developments in multi-agent fair allocation. In: AAAI, pp. 13563–13568 (2020)

    Google Scholar 

  3. Aziz, H., Huang, X., Mattei, N., Segal-Halevi, E.: Computing welfare-maximizing fair allocations of indivisible goods. Eur. J. Oper. Res. 307(2), 773–784 (2023)

    Article  MathSciNet  Google Scholar 

  4. Aziz, H., Moulin, H., Sandomirskiy, F.: A polynomial-time algorithm for computing a Pareto optimal and almost proportional allocation. Oper. Res. Lett. 48(5), 573–578 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bárány, I.: A short proof of Kneser’s conjecture. J. Combin. Theory Ser. A 25(3), 325–326 (1978)

    Article  MathSciNet  Google Scholar 

  6. Barman, S., Ghalme, G., Jain, S., Kulkarni, P., Narang, S.: Fair division of indivisible goods among strategic agents. In: AAMAS, pp. 1811–1813 (2019)

    Google Scholar 

  7. Barman, S., Krishnamurthy, S.K.: On the proximity of markets with integral equilibria. In: AAAI, pp. 1748–1755 (2019)

    Google Scholar 

  8. Brams, S.J., Feldman, M., Lai, J.K., Morgenstern, J., Procaccia, A.D.: On maxsum fair cake divisions. In: AAAI, pp. 1285–1291 (2012)

    Google Scholar 

  9. Brams, S.J., Taylor, A.D.: An envy-free cake division protocol. Am. Math. Mon. 102(1), 9–18 (1995)

    Article  MathSciNet  Google Scholar 

  10. Bu, X., Li, Z., Liu, S., Song, J., Tao, B.: On the complexity of maximizing social welfare within fair allocations of indivisible goods. arXiv preprint arXiv:2205.14296 (2022)

  11. Bu, X., Li, Z., Liu, S., Song, J., Tao, B.: Fair division with allocator’s preference. arXiv preprint arXiv:2310.03475 (2023)

  12. Budish, E.: The combinatorial assignment problem: approximate competitive equilibrium from equal incomes. J. Polit. Econ. 119(6), 1061–1103 (2011)

    Article  Google Scholar 

  13. Budish, E., Cachon, G.P., Kessler, J.B., Othman, A.: Course match: a large-scale implementation of approximate competitive equilibrium from equal incomes for combinatorial allocation. Oper. Res. 65(2), 314–336 (2017)

    Article  MathSciNet  Google Scholar 

  14. Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.: The unreasonable fairness of maximum Nash welfare. ACM Trans. Econ. Comput. 7(3), 1–32 (2019)

    Article  MathSciNet  Google Scholar 

  15. Cohler, Y.J., Lai, J.K., Parkes, D.C., Procaccia, A.D.: Optimal envy-free cake cutting. In: AAAI, pp. 626–631 (2011)

    Google Scholar 

  16. Conitzer, V., Freeman, R., Shah, N.: Fair public decision making. In: EC, pp. 629–646 (2017)

    Google Scholar 

  17. Even, S., Paz, A.: A note on cake cutting. Discret. Appl. Math. 7(3), 285–296 (1984)

    Article  MathSciNet  Google Scholar 

  18. Foley, D.K.: Resource allocation and the public sector. Yale Econ. Essays 7(1), 45–98 (1967)

    Google Scholar 

  19. Freeman, R., Micha, E., Shah, N.: Two-sided matching meets fair division. In: IJCAI, pp. 203–209 (2021)

    Google Scholar 

  20. Goldman, J., Procaccia, A.D.: Spliddit: unleashing fair division algorithms. ACM SIGecom Exchanges 13(2), 41–46 (2015)

    Article  Google Scholar 

  21. Gollapudi, S., Kollias, K., Plaut, B.: Almost envy-free repeated matching in two-sided markets. In: Chen, X., Gravin, N., Hoefer, M., Mehta, R. (eds.) WINE 2020. LNCS, vol. 12495, pp. 3–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64946-3_1

    Chapter  Google Scholar 

  22. Greene, J.E.: A new short proof of Kneser’s conjecture. Am. Math. Mon. 109(10), 918–920 (2002)

    Article  MathSciNet  Google Scholar 

  23. Güler, O., den Hertog, D., Roos, C., Terlaky, T., Tsuchiya, T.: Degeneracy in interior point methods for linear programming: a survey. Ann. Oper. Res. 46(1), 107–138 (1993)

    Article  MathSciNet  Google Scholar 

  24. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 49–76. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_3

    Chapter  Google Scholar 

  25. Igarashi, A., Kawase, Y., Suksompong, W., Sumita, H.: Fair division with two-sided preferences. In: IJCAI, pp. 2756–2764 (2023)

    Google Scholar 

  26. Jafari, A., Moghaddamzadeh, M.J.: On the chromatic number of generalized Kneser graphs and Hadamard matrices. Discret. Math. 343(2), 111682 (2020)

    Article  MathSciNet  Google Scholar 

  27. Kyropoulou, M., Suksompong, W., Voudouris, A.A.: Almost envy-freeness in group resource allocation. Theoret. Comput. Sci. 841, 110–123 (2020)

    Article  MathSciNet  Google Scholar 

  28. Lipton, R., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations of indivisible goods. In: EC, pp. 125–131 (2004)

    Google Scholar 

  29. Liu, S., Lu, X., Suzuki, M., Walsh, T.: Mixed fair division: A survey. arXiv preprint arXiv:2306.09564 (2023)

  30. Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25(3), 319–324 (1978)

    Article  MathSciNet  Google Scholar 

  31. Manurangsi, P., Suksompong, W.: Asymptotic existence of fair divisions for groups. Math. Soc. Sci. 89, 100–108 (2017)

    Article  MathSciNet  Google Scholar 

  32. Manurangsi, P., Suksompong, W.: Almost envy-freeness for groups: Improved bounds via discrepancy theory. Theoret. Comput. Sci. 930, 179–195 (2022)

    Article  MathSciNet  Google Scholar 

  33. Matoušek, J.: A combinatorial proof of Kneser’s conjecture. Combinatorica 24(1), 163–170 (2004)

    Article  MathSciNet  Google Scholar 

  34. McGlaughlin, P., Garg, J.: Improving Nash social welfare approximations. J. Artif. Intell. Res. 68, 225–245 (2020)

    Article  MathSciNet  Google Scholar 

  35. Moulin, H.: Fair division in the Internet age. Annu. Rev. Econ. 11(1), 407–441 (2019)

    Article  Google Scholar 

  36. Patro, G.K., Biswas, A., Ganguly, N., Gummadi, K.P., Chakraborty, A.: FairRec: two-sided fairness for personalized recommendations in two-sided platforms. In: WWW, pp. 1194–1204 (2020)

    Google Scholar 

  37. Procaccia, A.D.: Cake cutting: not just child’s play. Commun. ACM 56(7), 78–87 (2013)

    Article  Google Scholar 

  38. Robertson, J., Webb, W.: Cake-Cutting Algorithm: Be Fair If You Can. A K Peters/CRC Press (1998)

    Google Scholar 

  39. Segal-Halevi, E., Nitzan, S.: Fair cake-cutting among families. Soc. Choice Welfare 53(4), 709–740 (2019)

    Article  MathSciNet  Google Scholar 

  40. Segal-Halevi, E., Suksompong, W.: Democratic fair allocation of indivisible goods. Artif. Intell. 277, 103167 (2019)

    Article  MathSciNet  Google Scholar 

  41. Steinhaus, H.: The problem of fair division. Econometrica 16(1), 101–104 (1948)

    Google Scholar 

  42. Steinhaus, H.: Sur la division pragmatique. Econometrica 17, 315–319 (1949)

    Article  MathSciNet  Google Scholar 

  43. Suksompong, W.: Approximate maximin shares for groups of agents. Math. Soc. Sci. 92, 40–47 (2018)

    Article  MathSciNet  Google Scholar 

  44. Suksompong, W.: Constraints in fair division. ACM SIGecom Exchanges 19(2), 46–61 (2021)

    Article  Google Scholar 

  45. Varian, H.R.: Equity, envy, and efficiency. J. Econ. Theory 9(1), 63–91 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The research of Biaoshuai Tao was supported by the National Natural Science Foundation of China (No. 62102252). The research of Shengxin Liu was partially supported by the National Natural Science Foundation of China (No. 62102117), by the Shenzhen Science and Technology Program (No. RCBS20210609103900003), and by the Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515011188), and by CCF-Huawei Populus Grove Fund (No. CCF-HuaweiLK2022005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengxin Liu or Biaoshuai Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bu, X., Li, Z., Liu, S., Song, J., Tao, B. (2024). Fair Division with Allocator’s Preference. In: Garg, J., Klimm, M., Kong, Y. (eds) Web and Internet Economics. WINE 2023. Lecture Notes in Computer Science, vol 14413. Springer, Cham. https://doi.org/10.1007/978-3-031-48974-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48974-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48973-0

  • Online ISBN: 978-3-031-48974-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics