Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generator of Personalised Training Games Activities: A Conceptual Design Approach

  • Conference paper
  • First Online:
Games and Learning Alliance (GALA 2023)

Abstract

Memorizing declarative knowledge requires repetition, which can become wearing for learners. In addition, redundant game activities, offering unbalanced challenges in relation to the player’s skills, can also lead to a sense of boredom. To reduce this feeling, learning games must provide adapted and varied activities. Automated generation is one way of building such activities. This article proposes a conceptual framework for the design of activity generators for training declarative knowledge in Roguelite games. The framework has been applied in the context of the AdapTABLES project aiming at multiplication tables training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakkes, S., Tan, C.T., Pisan, Y.: Personalised gaming: a motivation and overview of literature. In: Proceedings of The 8th Australasian Conference on Interactive Entertainment: Playing the System, pp. 1–10. ACM, Auckland New Zealand (2012)

    Google Scholar 

  2. Bezza, A., Balla, A., Marir, F.: An approach for personalizing learning content in e-learning systems: a review. In: Second International Conference on E-Learning and E-Technologies in Education, pp. 218–223. IEEE, Lodz, Poland (2013)

    Google Scholar 

  3. Brame, C.J., Biel, R.: Test-enhanced learning: the potential for testing to promote greater learning in undergraduate science courses. LSE 14(2), es4 (2015)

    Google Scholar 

  4. Callies, S., Sola, N., Beaudry, E., Basque, J.: An empirical evaluation of a serious simulation game architecture for automatic adaptation. In: R. Munkvold & L. Kolas, Proceedings of the 9th ECGBL, pp. 107–116 (2015)

    Google Scholar 

  5. Carpentier, K., Lourdeaux, D.: Generation of learning situations according to the learner’s profile within a virtual environment. In: Filipe, J., Fred, A. (eds.) ICAART 2013. CCIS, vol. 449, pp. 245–260. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44440-5_15

    Chapter  Google Scholar 

  6. Holohan, E., Melia, M., McMullen, D., Pahl, C.: The generation of E-learning exercise problems from subject ontologies. In: 6th International Conference on Advanced Learning Technologies, pp. 967–969. IEEE, Kerkrade, Netherlands (2006)

    Google Scholar 

  7. Ismail, H., Belkhouche, B.: A reusable software architecture for personalized learning systems. In: 2018 International Conference on Innovations in Information Technology (IIT), pp. 105–110. IEEE, Al Ain (2018)

    Google Scholar 

  8. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47884-1_16

    Chapter  Google Scholar 

  9. Kim, J.W., Ritter, F.E., Koubek, R.J.: An integrated theory for improved skill acquisition and retention in the three stages of learning. Theor. Issues Ergon. Sci. 14(1), 22–37 (2013)

    Article  Google Scholar 

  10. Laforcade, P., Laghouaouta, Y.: Generation of adapted learning game scenarios: a model-driven engineering approach. In: McLaren, B.M., Reilly, R., Zvacek, S., Uhomoibhi, J. (eds.) CSEDU 2018. CCIS, vol. 1022, pp. 95–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21151-6_6

    Chapter  Google Scholar 

  11. Laforcade, P., Mottier, E., Jolivet, S., Lemoine, B.: Expressing adaptations to take into account in generator-based exercisers: an exploratory study about multiplication facts. In: 14th CSEDU. Online Streaming, France (2022)

    Google Scholar 

  12. Lemoine, B., Laforcade, P., George, S.: An analysis framework for designing declarative knowledge training games using roguelite genre. In: Proceedings of the 15th CSEDU, Volume 2, Prague, Czech Republic, April 21–23, pp. 276–287 (2023)

    Google Scholar 

  13. Lemoine, B., Laforcade, P., George, S.: Mapping task types and gameplay categories in the context of declarative knowledge training. In: Proceedings of the 15th CSEDU, Volume 2, Prague, Czech Republic, April 21–23, pp. 264–275 (2023)

    Google Scholar 

  14. Prensky, M.: Computer Games and Learning: Digital Game-Based Learning. Handbook of Computer Game Studies (2005)

    Google Scholar 

  15. Roepke, R., Drury, V., Schroeder, U., Meyer, U.: A modular architecture for personalized learning content in anti-phishing learning games. In: Software Engineering (Satellite Events) (2021)

    Google Scholar 

  16. Sehaba, K., Hussaan, A.M.: GOALS: Generator of adaptive learning scenarios. IJLT 8(3), 224 (2013)

    Article  Google Scholar 

  17. Smith, R.P.: Boredom: a review. Hum. Factors 23(3), 329–340 (1981)

    Article  Google Scholar 

  18. Streicher, A., Smeddinck, J.D.: Personalized and adaptive serious games. In: Dörner, R., Göbel, S., Kickmeier-Rust, M., Masuch, M., Zweig, K. (eds.) Entertainment Computing and Serious Games. LNCS, vol. 9970, pp. 332–377. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46152-6_14

    Chapter  Google Scholar 

  19. Tang, S., Hanneghan, M.: Game content model: an ontology for documenting serious game design. In: 2011 Developments in E-systems Engineering, pp. 431–436. IEEE, Dubai, United Arab Emirates (2011)

    Google Scholar 

  20. Tchounikine, P., Mørch, A.I., Bannon, L.J.: A computer science perspective on technology-enhanced learning research. In: Balacheff, N., Ludvigsen, S., de Jong, T., Lazonder, A., Barnes, S. (eds.) Technology-Enhanced Learning. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9827-7_16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bérénice Lemoine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lemoine, B., Laforcade, P. (2024). Generator of Personalised Training Games Activities: A Conceptual Design Approach. In: Dondio, P., et al. Games and Learning Alliance. GALA 2023. Lecture Notes in Computer Science, vol 14475. Springer, Cham. https://doi.org/10.1007/978-3-031-49065-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49065-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49064-4

  • Online ISBN: 978-3-031-49065-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics