Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

5G and MEC Based Data Streaming Architecture for Industrial AI

  • Conference paper
  • First Online:
Innovative Intelligent Industrial Production and Logistics (IN4PL 2023)

Abstract

Availability of computation capabilities and real-time machine data is one key requirement of smart manufacturing systems. Latency, privacy and security issues of cloud computing for Industrial artificial intelligence (AI) led to the edge computing paradigm, where computation is performed close to the data source. As on-premise edge deployments require companies to allocate budget and human resources to acquire and maintain the required information technologies (IT) infrastructure and equipment, they are not feasible for several companies. However, 5G can merge advantages of previous alternatives. Multi-Access Edge Computing (MEC) servers deployed at the edge of the 5G network close to the final user, offer security, privacy, scalability, high throughput and low latency advantages. MECs are suitable for industrial AI, while industrial companies do not face the burden of acquiring and maintaining servers and communication infrastructures. This paper proposes a real-time high-frequency data streaming architecture to deploy Industrial AI applications at MECs. The architecture has been successfully validated with data sent through a 5G network to a Kafka broker at the MEC, where different microservices are deployed in a Kubernetes cluster. The performance of the architecture has been investigated to analyze the capabilities of 5G and MEC to cope with the requirements of Industrial AI applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, E., Yaqoob, I., Gani, A., Imran, M., GuIzani, M.: Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wirel. Commun. 23(23), 10–16 (2016)

    Article  Google Scholar 

  2. Shabtay, L., Fournier-Viger, P., Yaari, R., Dattner, I.: A guided FP-Growth algorithm for mining multitude-targeted item-sets and class association rules in imbalanced data. Inf. Sci. (N Y) 553, 353–375 (2021). https://doi.org/10.1016/j.ins.2020.10.020

    Article  MathSciNet  Google Scholar 

  3. Taleb, T., Afolabi, I., Bagaa, M.: Orchestrating 5g network slices to support industrial internet and to shape next-generation smart factories. IEEE Netw. 33(4), 146–154 (2019). https://doi.org/10.1109/MNET.2018.1800129

    Article  Google Scholar 

  4. Zhang, C., Zhou, G., Li, J., Chang, F., Ding, K., Ma, D.: A multi-access edge computing enabled framework for the construction of a knowledge-sharing intelligent machine tool swarm in Industry 4.0. J. Manuf. Syst. 66, 56–70 (2023). https://doi.org/10.1016/j.jmsy.2022.11.015

    Article  Google Scholar 

  5. Liu, C., Xu, X., Peng, Q., Zhou, Z.: MTConnect-based cyber-physical machine tool: a case study. Procedia CIRP 72, 492–497 (2018). https://doi.org/10.1016/j.procir.2018.03.059

    Article  Google Scholar 

  6. Zhang, C., Zhou, G., Li, J., Qin, T., Ding, K., Chang, F.: KAiPP: an interaction recommendation approach for knowledge aided intelligent process planning with reinforcement learning. Knowl. Based Syst. 258, 110009 (2022). https://doi.org/10.1016/j.knosys.2022.110009

    Article  Google Scholar 

  7. Tao, F., Zhang, L., Liu, Y., Cheng, Y., Wang, L., Xu, X.: Manufacturing service management in cloud manufacturing: overview and future research directions. J. Manuf. Sci. Eng. 137(4), 040912 (2015). https://doi.org/10.1115/1.4030510

    Article  Google Scholar 

  8. Borsatti, D., Davoli, G., Cerroni, W., Raffaelli, C.: Enabling industrial IoT as a service with multi-access edge computing. IEEE Commun. Mag. 59(8), 21–27 (2021). https://doi.org/10.1109/MCOM.001.2100006

    Article  Google Scholar 

  9. Nikravan, M., Haghi Kashani, M.: A review on trust management in fog/edge computing: techniques, trends, and challenges. J. Netw. Comput. Appl. 204, 103402 (2022). https://doi.org/10.1016/j.jnca.2022.103402

    Article  Google Scholar 

  10. Mourtzis, D., Angelopoulos, J., Panopoulos, N.: Design and development of an edge-computing platform towards 5g technology adoption for improving equipment predictive maintenance. Procedia Comput Sci 200, 611–619 (2022). https://doi.org/10.1016/j.procs.2022.01.259

    Article  Google Scholar 

  11. Leng, J., Chen, Z., Sha, W., Ye, S., Liu, Q., Chen, X.: Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services. J. Manuf. Syst. 63, 143–161 (2022). https://doi.org/10.1016/j.jmsy.2022.03.008

    Article  Google Scholar 

  12. Ranaweera, P., Jurcut, A., Liyanage, M.: MEC-enabled 5G use cases: a survey on security vulnerabilities and countermeasures. ACM Comput. Surv. 54(9), 1–37 (2021). https://doi.org/10.1145/3474552

    Article  Google Scholar 

  13. Liyanage, M., Porambage, P., Ding, A.Y., Kalla, A.: Driving forces for multi-access edge computing (MEC) IoT integration in 5G. ICT Express 7(2), 127–137 (2021). https://doi.org/10.1016/j.icte.2021.05.007

    Article  Google Scholar 

  14. Cheng, J., Chen, W., Tao, F., Lin, C.L.: Industrial IoT in 5G environment towards smart manufacturing. J. Ind. Inf. Integr. 10, 10–19 (2018). https://doi.org/10.1016/j.jii.2018.04.001

    Article  Google Scholar 

  15. Cai, Y., Starly, B., Cohen, P., Lee, Y.S.: Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manuf. 10, 1031–1042 (2017). https://doi.org/10.1016/j.promfg.2017.07.094

    Article  Google Scholar 

  16. Liang, B., Gregory, M.A., Li, S.: Multi-access Edge Computing fundamentals, services, enablers and challenges: a complete survey. J. Netw. Comput. Appl. 199, 103308 (2022). https://doi.org/10.1016/j.jnca.2021.103308

    Article  Google Scholar 

  17. Khan, M.A., et al.: A Survey on Mobile Edge Computing for Video Streaming: Opportunities and Challenges (2022). http://arxiv.org/abs/2209.05761

  18. Ojanperä, T., Mäkelä, J., Majanen, M., Mämmelä, O., Martikainen, O., Väisänen, J.: Evaluation of LiDAR data processing at the mobile network edge for connected vehicles. EURASIP J. Wireless Commun. Netw. 2021, 96 (2021). https://doi.org/10.1186/s13638-021-01975-7

    Article  Google Scholar 

  19. Nowak, T.W., et al.: Verticals in 5G MEC-use cases and security challenges. IEEE Access 9, 87251–87298 (2021). https://doi.org/10.1109/ACCESS.2021.3088374

    Article  Google Scholar 

  20. Gabriel Brown: Ultra-Reliable Low-Latency 5G for Industrial Automation. Qualcomm Inc.

    Google Scholar 

  21. Massari, S., Mirizzi, N., Piro, G., Boggia, G.: An open-source tool modeling the ETSI-MEC architecture in the industry 4.0 context. In: 2021 29th Mediterranean Conference on Control and Automation, MED 2021, Institute of Electrical and Electronics Engineers Inc., pp. 226–231 (2021). https://doi.org/10.1109/MED51440.2021.9480205

  22. Vakaruk, S., Sierra-Garcia, J.E., Mozo, A., Pastor, A.: Forecasting automated guided vehicle malfunctioning with deep learning in a 5G-based industry 4.0 scenario. IEEE Commun. Mag. 59(11), 102–108 (2021). https://doi.org/10.1109/MCOM.221.2001079

    Article  Google Scholar 

  23. Song, M., Lee, Y., Kim, K.: Reward-oriented task offloading under limited edge server power for multiaccess edge computing. IEEE Internet Things J. 8(17), 13425–13438 (2021). https://doi.org/10.1109/JIOT.2021.3065429

    Article  Google Scholar 

  24. Liu, P., An, K., Lei, J., Zheng, G., Sun, Y., Liu, W.: SCMA-based multiaccess edge computing in IoT systems: an energy-efficiency and latency tradeoff. IEEE Internet Things J. 9(7), 4849–4862 (2022). https://doi.org/10.1109/JIOT.2021.3105658

    Article  Google Scholar 

  25. Ali, B., Gregory, M.A., Li, S.: Multi-access edge computing architecture, data security and privacy: a review. IEEE Access 9, 18706–18721 (2021). https://doi.org/10.1109/ACCESS.2021.3053233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Telmo Fernández De Barrena Sarasola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernández De Barrena Sarasola, T., Chacón, J.L.F., García, A., Dalgitsis, M. (2023). 5G and MEC Based Data Streaming Architecture for Industrial AI. In: Terzi, S., Madani, K., Gusikhin, O., Panetto, H. (eds) Innovative Intelligent Industrial Production and Logistics. IN4PL 2023. Communications in Computer and Information Science, vol 1886. Springer, Cham. https://doi.org/10.1007/978-3-031-49339-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49339-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49338-6

  • Online ISBN: 978-3-031-49339-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics