Abstract
Availability of computation capabilities and real-time machine data is one key requirement of smart manufacturing systems. Latency, privacy and security issues of cloud computing for Industrial artificial intelligence (AI) led to the edge computing paradigm, where computation is performed close to the data source. As on-premise edge deployments require companies to allocate budget and human resources to acquire and maintain the required information technologies (IT) infrastructure and equipment, they are not feasible for several companies. However, 5G can merge advantages of previous alternatives. Multi-Access Edge Computing (MEC) servers deployed at the edge of the 5G network close to the final user, offer security, privacy, scalability, high throughput and low latency advantages. MECs are suitable for industrial AI, while industrial companies do not face the burden of acquiring and maintaining servers and communication infrastructures. This paper proposes a real-time high-frequency data streaming architecture to deploy Industrial AI applications at MECs. The architecture has been successfully validated with data sent through a 5G network to a Kafka broker at the MEC, where different microservices are deployed in a Kubernetes cluster. The performance of the architecture has been investigated to analyze the capabilities of 5G and MEC to cope with the requirements of Industrial AI applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, E., Yaqoob, I., Gani, A., Imran, M., GuIzani, M.: Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wirel. Commun. 23(23), 10–16 (2016)
Shabtay, L., Fournier-Viger, P., Yaari, R., Dattner, I.: A guided FP-Growth algorithm for mining multitude-targeted item-sets and class association rules in imbalanced data. Inf. Sci. (N Y) 553, 353–375 (2021). https://doi.org/10.1016/j.ins.2020.10.020
Taleb, T., Afolabi, I., Bagaa, M.: Orchestrating 5g network slices to support industrial internet and to shape next-generation smart factories. IEEE Netw. 33(4), 146–154 (2019). https://doi.org/10.1109/MNET.2018.1800129
Zhang, C., Zhou, G., Li, J., Chang, F., Ding, K., Ma, D.: A multi-access edge computing enabled framework for the construction of a knowledge-sharing intelligent machine tool swarm in Industry 4.0. J. Manuf. Syst. 66, 56–70 (2023). https://doi.org/10.1016/j.jmsy.2022.11.015
Liu, C., Xu, X., Peng, Q., Zhou, Z.: MTConnect-based cyber-physical machine tool: a case study. Procedia CIRP 72, 492–497 (2018). https://doi.org/10.1016/j.procir.2018.03.059
Zhang, C., Zhou, G., Li, J., Qin, T., Ding, K., Chang, F.: KAiPP: an interaction recommendation approach for knowledge aided intelligent process planning with reinforcement learning. Knowl. Based Syst. 258, 110009 (2022). https://doi.org/10.1016/j.knosys.2022.110009
Tao, F., Zhang, L., Liu, Y., Cheng, Y., Wang, L., Xu, X.: Manufacturing service management in cloud manufacturing: overview and future research directions. J. Manuf. Sci. Eng. 137(4), 040912 (2015). https://doi.org/10.1115/1.4030510
Borsatti, D., Davoli, G., Cerroni, W., Raffaelli, C.: Enabling industrial IoT as a service with multi-access edge computing. IEEE Commun. Mag. 59(8), 21–27 (2021). https://doi.org/10.1109/MCOM.001.2100006
Nikravan, M., Haghi Kashani, M.: A review on trust management in fog/edge computing: techniques, trends, and challenges. J. Netw. Comput. Appl. 204, 103402 (2022). https://doi.org/10.1016/j.jnca.2022.103402
Mourtzis, D., Angelopoulos, J., Panopoulos, N.: Design and development of an edge-computing platform towards 5g technology adoption for improving equipment predictive maintenance. Procedia Comput Sci 200, 611–619 (2022). https://doi.org/10.1016/j.procs.2022.01.259
Leng, J., Chen, Z., Sha, W., Ye, S., Liu, Q., Chen, X.: Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services. J. Manuf. Syst. 63, 143–161 (2022). https://doi.org/10.1016/j.jmsy.2022.03.008
Ranaweera, P., Jurcut, A., Liyanage, M.: MEC-enabled 5G use cases: a survey on security vulnerabilities and countermeasures. ACM Comput. Surv. 54(9), 1–37 (2021). https://doi.org/10.1145/3474552
Liyanage, M., Porambage, P., Ding, A.Y., Kalla, A.: Driving forces for multi-access edge computing (MEC) IoT integration in 5G. ICT Express 7(2), 127–137 (2021). https://doi.org/10.1016/j.icte.2021.05.007
Cheng, J., Chen, W., Tao, F., Lin, C.L.: Industrial IoT in 5G environment towards smart manufacturing. J. Ind. Inf. Integr. 10, 10–19 (2018). https://doi.org/10.1016/j.jii.2018.04.001
Cai, Y., Starly, B., Cohen, P., Lee, Y.S.: Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manuf. 10, 1031–1042 (2017). https://doi.org/10.1016/j.promfg.2017.07.094
Liang, B., Gregory, M.A., Li, S.: Multi-access Edge Computing fundamentals, services, enablers and challenges: a complete survey. J. Netw. Comput. Appl. 199, 103308 (2022). https://doi.org/10.1016/j.jnca.2021.103308
Khan, M.A., et al.: A Survey on Mobile Edge Computing for Video Streaming: Opportunities and Challenges (2022). http://arxiv.org/abs/2209.05761
Ojanperä, T., Mäkelä, J., Majanen, M., Mämmelä, O., Martikainen, O., Väisänen, J.: Evaluation of LiDAR data processing at the mobile network edge for connected vehicles. EURASIP J. Wireless Commun. Netw. 2021, 96 (2021). https://doi.org/10.1186/s13638-021-01975-7
Nowak, T.W., et al.: Verticals in 5G MEC-use cases and security challenges. IEEE Access 9, 87251–87298 (2021). https://doi.org/10.1109/ACCESS.2021.3088374
Gabriel Brown: Ultra-Reliable Low-Latency 5G for Industrial Automation. Qualcomm Inc.
Massari, S., Mirizzi, N., Piro, G., Boggia, G.: An open-source tool modeling the ETSI-MEC architecture in the industry 4.0 context. In: 2021 29th Mediterranean Conference on Control and Automation, MED 2021, Institute of Electrical and Electronics Engineers Inc., pp. 226–231 (2021). https://doi.org/10.1109/MED51440.2021.9480205
Vakaruk, S., Sierra-Garcia, J.E., Mozo, A., Pastor, A.: Forecasting automated guided vehicle malfunctioning with deep learning in a 5G-based industry 4.0 scenario. IEEE Commun. Mag. 59(11), 102–108 (2021). https://doi.org/10.1109/MCOM.221.2001079
Song, M., Lee, Y., Kim, K.: Reward-oriented task offloading under limited edge server power for multiaccess edge computing. IEEE Internet Things J. 8(17), 13425–13438 (2021). https://doi.org/10.1109/JIOT.2021.3065429
Liu, P., An, K., Lei, J., Zheng, G., Sun, Y., Liu, W.: SCMA-based multiaccess edge computing in IoT systems: an energy-efficiency and latency tradeoff. IEEE Internet Things J. 9(7), 4849–4862 (2022). https://doi.org/10.1109/JIOT.2021.3105658
Ali, B., Gregory, M.A., Li, S.: Multi-access edge computing architecture, data security and privacy: a review. IEEE Access 9, 18706–18721 (2021). https://doi.org/10.1109/ACCESS.2021.3053233
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fernández De Barrena Sarasola, T., Chacón, J.L.F., García, A., Dalgitsis, M. (2023). 5G and MEC Based Data Streaming Architecture for Industrial AI. In: Terzi, S., Madani, K., Gusikhin, O., Panetto, H. (eds) Innovative Intelligent Industrial Production and Logistics. IN4PL 2023. Communications in Computer and Information Science, vol 1886. Springer, Cham. https://doi.org/10.1007/978-3-031-49339-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-49339-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49338-6
Online ISBN: 978-3-031-49339-3
eBook Packages: Computer ScienceComputer Science (R0)