Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Knowledge-Based User Feedback Classification Approach for Software Support

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2023)

Abstract

The analysis of the textual content of user opinions on social networks about software applications in use can provide valuable information to the development and support teams, in terms of errors, dissatisfactions, new functional requirements, among others. The paper presents a solution based on intelligent technologies to automatically classify whether or not the content of a review is relevant to a software support team. This solution combines machine learning algorithms, with the use of a domain-specific glossary for feature selection, in predicting the relevance of reviews. The proposed solution was evaluated experimentally with three datasets, specifically Facebook, Tapfish and SwiftKey, and the results obtained were very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulmunim, A., Younis, Y.S.: Supporting classification of software requirements system using intelligent technologies algorithms. Technium 3(11), 32–39 (2021)

    Article  Google Scholar 

  2. Araujo Arredondo, N.P.: Método Semisupervisado para la Clasificación Automática de Textos de Opinión. Tesis de Maestría en Ciencias Computacionales, INAOE (2009)

    Google Scholar 

  3. Bengfort, B., Bilbro, R., Ojeda, T.: Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning. O’Reilly Media (2018)

    Google Scholar 

  4. Bird, S.: Nltk: the natural language toolkit. In: Proceedings of the COLING/ACL on Interactive Presentation Sessions,pp. 69–72 (2006)

    Google Scholar 

  5. Casamayor, A., Godoy, D., Campo, M.: Identification of non-functional requirements in textual specifications: a semi-supervised learning approach. Inf. Softw. Technol. 52(4), 436–445 (2010)

    Article  Google Scholar 

  6. Chen, N., Lin, J., Hoi, S.C., Xiao, X., Zhang, B.: Ar-miner: mining informative reviews for developers from mobile app marketplace. In: Proceedings of the 36th International Conference on Software Engineering, pp. 767–778. Hyderabad, India (2014)

    Google Scholar 

  7. Ciurumelea, A., Schaufelbühl, A., Panichella, S., Gall, H.C.: Analyzing reviews and code of mobile apps for better release planning. In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 91–102. Klagenfurt, Austria (2017)

    Google Scholar 

  8. Dias Canedo, E., Cordeiro Mendes, B.: Software requirements classification using machine learning algorithms. Entropy 1057 22(9), 1–20 (2020)

    Google Scholar 

  9. Foundation, P.S.: Python 3.11.1 documentation, April (2023)

    Google Scholar 

  10. González Guerra, P.S.: Hybrid method of emotion detection with semantic approach in feature selection (2021)

    Google Scholar 

  11. Groen, E.C., Doerr, J., Adam, S.: Towards crowd-based requirements engineering a research preview. In: Requirements Engineering: Foundation for Software Quality: 21st International Working Conference, REFSQ 2015, pp. 247–253. Essen, Germany (2015)

    Google Scholar 

  12. Hao, J., Ho, T.K.: Machine learning made easy: a review of scikit-learn package in python programming language. J. Educ. Behav. Stat. 44(3), 348–361 (2019)

    Article  Google Scholar 

  13. ISO/IEC/IEEE. International standard. Systems and software engineering — vocabulary (2017)

    Google Scholar 

  14. Jindal, R.R., Malhotra, R., Jain, A.: Automated classification of security requirements. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2027–2033. Jaipur, India, (2016)

    Google Scholar 

  15. Kurtanovićand, Z., Maalej, W.: Automatically classifying functional and non-functional requirements using supervised machine learning. In: 2017 IEEE 25th International Requirements Engineering Conference (RE), pp. 490–495. Lisbon, Portugal (2017)

    Google Scholar 

  16. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? on automatically classifying app review. In: 2015 IEEE 23rd International Requirements Engineering Conference (RE), pp. 116–125. Ottawa, Canada (2015)

    Google Scholar 

  17. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements engineering. IEEE Softw. 33(1), 48–54 (2015)

    Article  Google Scholar 

  18. Malhotra, R., Khanna, M.: An exploratory study for software change prediction in object oriented systems using hybridized techniques. Autom. Softw. Eng. 24, 673–717 (2017)

    Article  Google Scholar 

  19. Milián Núñez, V., González Diez, H., Simón Cuevas, A.: Predicting the evolution of software requirements based on user reviews. In: 6th International Conference on Computer Science (CICCI’ 2022), Proceedings of 18th International Convention and Fair INFORMATICA 2022, Havana, Cuba (2022)

    Google Scholar 

  20. Nagpalnjm, M.D., Kalia, A.: A comprehensive analysis of requirement engineering utilizing machine learning techniques. Design Engineering 2662–2678 (2021)

    Google Scholar 

  21. Ott, D.: Automatic requirement categorization of large natural language specifications at mercedes-benz for review improvements”. In: Requirements Engineering: Foundation for Software Quality: 19th International Working Conference, REFSQ 2013, pp. 50–64. Essen, Germany (2013)

    Google Scholar 

  22. Pang, Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pp. 115–124 (2005)

    Google Scholar 

  23. Villarroel, L., Bavota Russo, G.B., Oliveto, R., di Penta, M.: Release planning of mobile apps based on user reviews. In: Proceedings of the 38th International Conference on Software Engineering, pp. 14–24. Austin, USA (2016)

    Google Scholar 

  24. Villena Román, J., Collada Pérez, S., Lana Serrano, S., González Cristóbal, J.C.: Hybrid method for categorization of text based on learning and rules. Nat. Lang. Process. 46, 35–43 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir Milián Núñez or Alfredo Simón-Cuevas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milián Núñez, V., Blanco Martín, T., Simón-Cuevas, A., González Diéz, H., Hernández González, A. (2024). A Knowledge-Based User Feedback Classification Approach for Software Support. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2023. Lecture Notes in Computer Science, vol 14335. Springer, Cham. https://doi.org/10.1007/978-3-031-49552-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49552-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49551-9

  • Online ISBN: 978-3-031-49552-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics