Abstract
Answer Set Programming (ASP) is a declarative formalism, developed in the field of nonmonotonic reasoning and recognized as a powerful tool for Knowledge Representation and Reasoning. ASP features show potential also in the Stream Reasoning realm. Nevertheless, such a scenario demands for repeated executions and requires reactive reasoning over rapidly changing data streams. Evaluating ASP programs from scratch at each time point represents a bottleneck. To overcome such limits, incremental reasoning techniques have been proposed. Overgrounding is an incremental grounding technique working under the answer set semantics that fully endorses the ASP declarative nature. Given a non-ground program to be repeatedly evaluated in consecutive time points over possibly differing sets of input facts, overgrounding maintains and enriches an overgrounded program, which eventually converges to a propositional theory general enough to be reused together with possible future inputs. In this work, we focus on developments and extensions of overgrounding that could be beneficial in Stream Reasoning applications. In particular, we present forms of forgetting and regeneration strategies purposely intended to mitigate the typical accumulation-oriented behavior of overgrounding by properly dropping accumulated atoms and/or rules.
This work has been supported by the PNRR project FAIR - Future AI Research (PE00000013), Spoke 9 - Green-aware AI, under the NRRP MUR program funded by the NextGenerationEU, and by the project PRIN PE6, Title: “Declarative Reasoning over Streams”, funded by the Italian Ministero dell’Università, dell’Istruzione e della Ricerca (MIUR), CUP:H24I17000080001, and by the project “Smart Cities Lab” (CUP J89J21009750007) funded on POR FESR-FSE Calabria 2014–2020.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_19
Beck, H., Bierbaumer, B., Dao-Tran, M., Eiter, T., Hellwagner, H., Schekotihin, K.: Stream reasoning-based control of caching strategies in CCN routers. In: IEEE International Conference on Communications, ICC 2017, Paris, France, 21–25 May 2017, pp. 1–6. IEEE (2017). https://doi.org/10.1109/ICC.2017.7996762
Beck, H., Dao-Tran, M., Eiter, T.: Answer update for rule-based stream reasoning. In: IJCAI, pp. 2741–2747. AAAI Press (2015)
Cabalar, P., Fandinno, J., Schaub, T., Wanko, P.: On the semantics of hybrid ASP systems based on clingo. Algorithms 16(4), 185 (2023)
Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: External computations and interoperability in the new DLV grounder. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017 Advances in Artificial Intelligence. Lecture Notes in Computer Science(), vol. 10640, pp. 172–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70169-1_13
Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder of DLV. Intelligenza Artificiale 11(1), 5–20 (2017)
Calimeri, F., Germano, S., Ianni, G., Pacenza, F., Perri, S., Zangari, J.: Integrating rule-based AI tools into mainstream game development. In: Benzmüller, C., Ricca, F., Parent, X., Roman, D. (eds.) RuleML+RR 2018. LNCS, vol. 11092, pp. 310–317. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99906-7_23
Calimeri, F., Ianni, G., Pacenza, F., Perri, S., Zangari, J.: Incremental answer set programming with overgrounding. TPLP 19(5–6), 957–973 (2019)
Calimeri, F., Ianni, G., Pacenza, F., Perri, S., Zangari, J.: ASP-based multi-shot reasoning via DLV2 with incremental grounding. In: PPDP, pp. 1–9. ACM (2022)
Calimeri, F., et al.: ASP-based declarative reasoning in data-intensive enterprise and IoT applications. Algorithms 16(3), 159 (2023)
Calimeri, F., Manna, M., Mastria, E., Morelli, M.C., Perri, S., Zangari, J.: I-DLV-sr: a stream reasoning system based on I-DLV. Theory Pract. Log. Program. 21(5), 610–628 (2021)
Dodaro, C., Eiter, T., Ogris, P., Schekotihin, K.: Managing caching strategies for stream reasoning with reinforcement learning. Theory Pract. Log. Program. 20(5), 625–640 (2020). https://doi.org/10.1017/S147106842000037X
Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. Intell. 172(14), 1644–1672 (2008). https://doi.org/10.1016/J.ARTINT.2008.05.002
Fuscà, D., Germano, S., Zangari, J., Anastasio, M., Calimeri, F., Perri, S.: A framework for easing the development of applications embedding answer set programming. In: PPDP, pp. 38–49. ACM (2016)
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. TPLP 19(1), 27–82 (2019)
Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation techniques and systems for answer set programming: a survey. In: IJCAI, pp. 5450–5456. ijcai.org (2018)
Ianni, G., Pacenza, F., Zangari, J.: Incremental maintenance of overgrounded logic programs with tailored simplifications. TPLP 20(5), 719–734 (2020)
Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding and solving in answer set programming. AI Mag. 37(3), 25–32 (2016)
Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Maintenance of datalog materialisations revisited. Artif. Intell. 269, 76–136 (2019). https://doi.org/10.1016/j.artint.2018.12.004
Phuoc, D.L., Eiter, T.: An adaptive semantic stream reasoning framework for deep neural networks. In: Conrad, S., Tiddi, I. (eds.) Proceedings of the CIKM 2020 Workshops co-located with 29th ACM International Conference on Information and Knowledge Management (CIKM 2020), Galway, Ireland, 19–23 October 2020. CEUR Workshop Proceedings, vol. 2699. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2699/paper09.pdf
Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)
Saribatur, Z.G., Patoglu, V., Erdem, E.: Finding optimal feasible global plans for multiple teams of heterogeneous robots using hybrid reasoning: an application to cognitive factories. Auton. Robots 43(1), 213–238 (2019). https://doi.org/10.1007/s10514-018-9721-x
Suchan, J., Bhatt, M., Walega, P.A., Schultz, C.P.L.: Visual explanation by high-level abduction: On answer-set programming driven reasoning about moving objects. In: AAAI, pp. 1965–1972 (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17303
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Calimeri, F., Ianni, G., Pacenza, F., Perri, S., Zangari, J. (2023). Forget and Regeneration Techniques for Optimizing ASP-Based Stream Reasoning. In: Gebser, M., Sergey, I. (eds) Practical Aspects of Declarative Languages. PADL 2024. Lecture Notes in Computer Science, vol 14512. Springer, Cham. https://doi.org/10.1007/978-3-031-52038-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-52038-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52037-2
Online ISBN: 978-3-031-52038-9
eBook Packages: Computer ScienceComputer Science (R0)