Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exact and Parameterized Algorithms for Choosability

  • Conference paper
  • First Online:
SOFSEM 2024: Theory and Practice of Computer Science (SOFSEM 2024)

Abstract

In the Choosability problem (or list chromatic number problem), for a given graph G, we need to find the smallest k such that G admits a list coloring for any list assignment where all lists contain at least k colors. The problem is tightly connected with the well-studied Coloring and List Coloring problems. However, the knowledge of the complexity landscape for the Choosability problem is pretty scarce. Moreover, most of the known results only provide lower bounds for its computational complexity and do not provide ways to cope with the intractability. The main objective of our paper is to construct the first non-trivial exact exponential algorithms for the Choosability problem, and complete the picture with parameterized results.

Specifically, we present the first single-exponential algorithm for the decision version of the problem with fixed k. This result answers an implicit question from Eppstein on a stackexchange thread discussing upper bounds on the union of lists assigned to vertices. We also present a \(2^{n^2} poly(n)\) time algorithm for the general Choosability problem.

In the parameterized setting, we give a polynomial kernel for the problem parameterized by vertex cover, and algorithms that run in FPT time when parameterized by clique-modulator and by the dual parameterization \(n-k\). Additionally, we show that Choosability admits a significant running time improvement if it is parameterized by cutwidth in comparison with the parameterization by treewidth studied by Marx and Mitsou [ICALP’16]. On the negative side, we provide a lower bound parameterized by a modulator to split graphs under assumption of the Exponential Time Hypothesis.

Supported by the project CRACKNP that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 853234).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. 1.

    https://cstheory.stackexchange.com/questions/2661/how-many-distinct-colors-are-needed-to-lower-bound-the-choosability-of-a-graph.

References

  1. Alon, N.: Restricted colorings of graphs. Surv. Comb. 187, 1–33 (1993)

    MathSciNet  Google Scholar 

  2. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12, 125–134 (1992). https://doi.org/10.1007/BF01204715

    Article  MathSciNet  Google Scholar 

  3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: Johnson, D.S., Feige, U. (eds.) Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, 11–13 June 2007, pp. 67–74. ACM (2007)

    Google Scholar 

  4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 67–74 (2007)

    Google Scholar 

  5. Bliznets, I., Hecher, M.: Private communication (2023)

    Google Scholar 

  6. Bonamy, M., Kang, R.J.: List coloring with a bounded palette. J. Graph Theory 84(1), 93–103 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  8. Diestel, R.: Graph Theory. Electronic Library of Mathematics, Springer, Heidelberg (2006)

    Google Scholar 

  9. Erdos, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium, vol. 26, pp. 125–157 (1979)

    Google Scholar 

  10. Fellows, M.R., et al.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2), 143–153 (2011)

    Article  MathSciNet  Google Scholar 

  11. Fomin, F., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019). Publisher Copyright: Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi 2019

    Google Scholar 

  12. Golovach, P.A., Heggernes, P.: Choosability of \(P_5\)-free graphs. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 382–391. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03816-7_33

    Chapter  Google Scholar 

  13. Golovach, P.A., Heggernes, P.: Choosability of \(P_5\)-free graphs. Bull. Syktyvkar Univ. Ser. 1. Math. Mech. Comput. Sci. (11), 126–139 (2010)

    Google Scholar 

  14. Golovach, P.A., Heggernes, P., van’t Hof, P., Paulusma, D.: Choosability on \(H\)-free graphs. Inf. Process. Lett. 113(4), 107–110 (2013)

    Google Scholar 

  15. Gutner, S.: The complexity of planar graph choosability. Discrete Math. 159(1–3), 119–130 (1996)

    Article  MathSciNet  Google Scholar 

  16. Gutner, S., Tarsi, M.: Some results on (a: b)-choosability. Discrete Math. 309(8), 2260–2270 (2009)

    Article  MathSciNet  Google Scholar 

  17. Jansen, B.M., Nederlof, J.: Computing the chromatic number using graph decompositions via matrix rank. Theor. Comput. Sci. 795, 520–539 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kowalik, L., Socala, A.: Tight lower bounds for list edge coloring. In: Eppstein, D. (ed.) 16th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2018. LIPIcs, Malmö, Sweden, 18–20 June 2018, vol. 101, pp. 28:1–28:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

  19. Král’, D., Sgall, J.: Coloring graphs from lists with bounded size of their union. J. Graph Theory 49(3), 177–186 (2005)

    Article  MathSciNet  Google Scholar 

  20. Marx, D., Mitsou, V.: Double-exponential and triple-exponential bounds for choosability problems parameterized by treewidth (2016)

    Google Scholar 

  21. Molloy, M.: The list chromatic number of graphs with small clique number. J. Comb. Theory Ser. B 134, 264–284 (2019)

    Article  MathSciNet  Google Scholar 

  22. Noel, J.A., Reed, B.A., Wu, H.: A proof of a conjecture of Ohba. J. Graph Theory 79(2), 86–102 (2015)

    Article  MathSciNet  Google Scholar 

  23. Reed, B., Sudakov, B.: List colouring when the chromatic number is close to the order of the graph. Combinatorica 25(1), 117–123 (2004)

    Article  MathSciNet  Google Scholar 

  24. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz 29(3), 10 (1976)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Bliznets .

Editor information

Editors and Affiliations

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bliznets, I., Nederlof, J. (2024). Exact and Parameterized Algorithms for Choosability. In: Fernau, H., Gaspers, S., Klasing, R. (eds) SOFSEM 2024: Theory and Practice of Computer Science. SOFSEM 2024. Lecture Notes in Computer Science, vol 14519. Springer, Cham. https://doi.org/10.1007/978-3-031-52113-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52113-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52112-6

  • Online ISBN: 978-3-031-52113-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics