Abstract
Sparse linear algebra kernels are memory-bound routines, and their performance varies significantly according to the non-null pattern of the sparse matrix operands. The impressive computing power and memory bandwidth of modern massively parallel computing devices encourage researchers to develop sparse linear algebra kernels that can exploit these platforms efficiently. In this sense, a main line of work improves the storage of matrices, aiming to optimize the communication between the memory and the cores. In previous work, the use of a strategy consisting of a delta-encoding with matrix reorderings compressed the indexing data of the matrix, saving storage and communications. This work presents an algorithm to improve the reordering strategy and the resulting compression of the indexing data. The results show that this strategy leads to important storage savings, which can also reduce data movements between the main memory and processors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-vector multiplication for GPU architectures. In: Patt, Y.N., Foglia, P., Duesterwald, E., Faraboschi, P., Martorell, X. (eds.) HiPEAC 2010. LNCS, vol. 5952, pp. 111–125. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11515-8_10
Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied Mathematics (1994). https://doi.org/10.1137/1.9781611971538, https://epubs.siam.org/doi/abs/10.1137/1.9781611971538
Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput-oriented processors. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC 2009. Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1654059.1654078
Berger, G., Freire, M., Marini, R., Dufrechou, E., Ezzatti, P.: Unleashing the performance of bmSparse for the sparse matrix multiplication in GPUs. In: Proceedings of the 2021 12th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), pp. 19–26, November 2021
Berger, G., Freire, M., Marini, R., Dufrechou, E., Ezzatti, P.: Advancing on an efficient sparse matrix multiplication kernel for modern GPUs. Concurr. Comput. Pract. Experience 35, e7271 (2022). https://doi.org/10.1002/cpe.7271, https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7271
Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th National Conference, pp. 157–172. ACM Press (1969). https://doi.org/10.1145/800195.805928
Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1–25 (2011). https://doi.org/10.1145/2049662.2049663
Dufrechou, E., Ezzatti, P., Quintana-Ortí, E.S.: Selecting optimal SPMV realizations for GPUs via machine learning. Int. J. High Perform. Comput. Appl. 35(3), 254–267 (2021). https://doi.org/10.1177/1094342021990738
Favaro, F., Oliver, J.P., Ezzatti, P.: Unleashing the computational power of FPGAs to efficiently perform SPMV operation. In: 40th International Conference of the Chilean Computer Science Society, SCCC 2021, La Serena, Chile, 15–19 November 2021, pp. 1–8. IEEE (2021). https://doi.org/10.1109/SCCC54552.2021.9650418
Freire, M., Marichal, R., Dufrechou, E., Ezzatti, P.: Towards reducing communications in sparse matrix kernels. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti, L. (eds.) Cloud Computing, Big Data & Emerging Topics, JCC-BD &ET 2023. CCIS, vol. 1828, pp. 17–30. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-40942-4_2
George, A.: Computer implementation of the finite element method. Ph.D. thesis, Computer Science Department, School of Humanities and Sciences, Stanford University, CA, USA (1971)
George, J.A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981)
Godwin, J., Holewinski, J., Sadayappan, P.: High-performance sparse matrix-vector multiplication on GPUs for structured grid computations. In: The 5th Annual Workshop on General Purpose Processing with Graphics Processing Units, GPGPU-5, London, United Kingdom, 3 March 2012, pp. 47–56. ACM (2012)
Gómez, C., Mantovani, F., Focht, E., Casas, M.: Efficiently running SPMV on long vector architectures. In: Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2021, pp. 292–303. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3437801.3441592
Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-vector multiply on GPUs. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (15th PPOPP 2010), pp. 115–125. ACM SIGPLAN, Bangalore, India, January 2010
Karakasis, V., Gkountouvas, T., Kourtis, K., Goumas, G.I., Koziris, N.: An extended compression format for the optimization of sparse matrix-vector multiplication. IEEE Trans. Parallel Distributed Syst. 24(10), 1930–1940 (2013). https://doi.org/10.1109/TPDS.2012.290, https://doi.org/10.1109/TPDS.2012.290
Kourtis, K., Goumas, G.I., Koziris, N.: Optimizing sparse matrix-vector multiplication using index and value compression. In: Ramírez, A., Bilardi, G., Gschwind, M. (eds.) Proceedings of the 5th Conference on Computing Frontiers, 2008, Ischia, Italy, 5–7 May 2008, pp. 87–96. ACM (2008). https://doi.org/10.1145/1366230.1366244
Marichal, R., Dufrechou, E., Ezzatti, P.: Optimizing sparse matrix storage for the big data era. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti, L. (eds.) Cloud Computing, Big Data & Emerging Topics - 9th Conference, JCC-BD &ET, La Plata, Argentina, 22–25 June 2021, Proceedings. Communications in Computer and Information Science, vol. 1444, pp. 121–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84825-5_9
de Oliveira, S.L.G., de Abreu, A.A.A.M.: An evaluation of pseudoperipheral vertex finders for the reverse Cuthill-McKee method for bandwidth and profile reductions of symmetric matrices. In: 37th International Conference of the Chilean Computer Science Society, SCCC 2018, Santiago, Chile, 5–9 November 2018, pp. 1–9. IEEE (2018). https://doi.org/10.1109/SCCC.2018.8705263
de Oliveira, S.L.G., Silva, L.M.: Low-cost heuristics for matrix bandwidth reduction combined with a hill-climbing strategy. RAIRO Oper. Res. 55(4), 2247–2264 (2021). https://doi.org/10.1051/ro/2021102
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2003)
Tang, W.T., et al.: Accelerating sparse matrix-vector multiplication on GPUs using bit-representation-optimized schemes. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. ACM, November 2013. https://doi.org/10.1145/2503210.2503234
Willcock, J., Lumsdaine, A.: Accelerating sparse matrix computations via data compression. In: Proceedings of the 20th Annual International Conference on Supercomputing, ICS 2006, pp. 307–316. Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1183401.1183444
Zhang, J., Gruenwald, L.: Regularizing irregularity: bitmap-based and portable sparse matrix multiplication for graph data on GPUs. In: Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA), GRADES-NDA 2018. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3210259.3210263
Acknowledgments
This work is partially funded by the UDELAR CSIC-INI project CompactDisp: Formatos dispersos eficientes para arquitecturas de hardware modernas. The authors also thank PEDECIBA Informática and the University of the Republic, Uruguay.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Freire, M., Marichal, R., Gonzaga de Oliveira, S.L., Dufrechou, E., Ezzatti, P. (2024). Enhancing the Sparse Matrix Storage Using Reordering Techniques. In: Barrios H., C.J., Rizzi, S., Meneses, E., Mocskos, E., Monsalve Diaz, J.M., Montoya, J. (eds) High Performance Computing. CARLA 2023. Communications in Computer and Information Science, vol 1887. Springer, Cham. https://doi.org/10.1007/978-3-031-52186-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-52186-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52185-0
Online ISBN: 978-3-031-52186-7
eBook Packages: Computer ScienceComputer Science (R0)