Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Star Colouring of Regular Graphs Meets Weaving and Line Graphs

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2024)

Abstract

For \( q\in \mathbb {N} \), a \( q \)-star colouring of a graph \( G \) is a proper \( q \)-colouring \( f \) of \( G \) such that there is no path \( u,v,w,x \) in \( G \) with \( f(u)=f(w) \) and \( f(v)=f(x) \) (the violating path need not be induced). For \( p\ge 2 \), Shalu and Antony (Discrete Math., 2022) proved that at least \( p+2 \) colours are required to star colour a \( 2p \)-regular graph \( G \), and characterised the class \( \mathcal {G} \) of graphs \( G \) for which \( p+2 \) colours suffices in terms of graph orientations. In the second author’s thesis (2023), we provided a characterisation of the class \( \mathcal {G} \) in terms of locally constrained graph homomorphisms. In this paper, we characterise \( \mathcal {G} \) in terms of weaving patterns of edge decompositions. We also show that the study of class \( \mathcal {G} \) is tied to the theory of line graphs and line digraphs of complete graphs. We prove that if a \( K_{1,p+1} \)-free \( 2p \)-regular graph \( G \) with \( p\ge 2 \) is \( (p+2) \)-star colourable, then \( {-2} \) and \( p-2 \) are eigenvalues of the adjacency matrix of \( G \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adanur, S.: Handbook of Weaving. CRC Press, Boca Raton (2020). https://doi.org/10.1201/9780429135828

    Book  Google Scholar 

  2. Akleman, E., Chen, J., Gross, J.L.: Extended graph rotation systems as a model for cyclic weaving on orientable surfaces. Discret. Appl. Math. 193, 61–79 (2015). https://doi.org/10.1016/j.dam.2015.04.015

    Article  MathSciNet  Google Scholar 

  3. Antony, C.: The complexity of star colouring and its relatives. Ph.D. thesis, Indian Institute of Information Technology, Design & Manufacturing, (IIITDM) Kancheepuram, Chennai, India (2023). https://doi.org/10.13140/RG.2.2.28192.66561

  4. Bagga, J.S., Beineke, L.W.: A survey of line digraphs and generalizations. DML Discrete Math. Lett. 6, 68–83 (2021). https://doi.org/10.47443/dml.2021.s109

    Article  MathSciNet  Google Scholar 

  5. Beineke, L.W., Bagga, J.S.: Line Graphs and Line Digraphs, Developments in Mathematics, vol. 68. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81386-4

  6. Borodin, O.V.: Colorings of plane graphs: a survey. Discret. Math. 313(4), 517–539 (2013). https://doi.org/10.1016/j.disc.2012.11.011

    Article  MathSciNet  Google Scholar 

  7. Fiala, J., Paulusma, D., Telle, J.A.: Locally constrained graph homomorphisms and equitable partitions. Eur. J. Comb. 29(4), 850–880 (2008). https://doi.org/10.1016/j.ejc.2007.11.006

    Article  MathSciNet  Google Scholar 

  8. Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms - structure, complexity, and applications. Comput. Sci. Rev. 2(2), 97–111 (2008). https://doi.org/10.1016/j.cosrev.2008.06.001

    Article  Google Scholar 

  9. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph coloring for computing derivatives. SIAM Rev. 47(4), 629–705 (2005). https://doi.org/10.1137/S0036144504444711

    Article  MathSciNet  Google Scholar 

  10. Hu, S.: A topological theory of weaving and its applications in computer graphics. Ph.D. thesis, USA (2013). aAI3607499

    Google Scholar 

  11. Lei, H., Shi, Y.: A survey on star edge-coloring of graphs. Adv. Math. 50(1), 77–93 (2021)

    MathSciNet  Google Scholar 

  12. Nešetřil, J., de Mendez, P.O.: Colorings and homomorphisms of minor closed classes. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry. Algorithms and Combinatorics, vol. 25, pp. 651–664. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-55566-4_29

    Chapter  Google Scholar 

  13. Ren, Y., Panetta, J., Chen, T., Isvoranu, F., Poincloux, S., Brandt, C., Martin, A., Pauly, M.: 3D weaving with curved ribbons. ACM Trans. Graph. 40(4), 127 (2021). https://doi.org/10.1145/3450626.3459788

    Article  Google Scholar 

  14. Shalu, M.A., Antony, C.: Star colouring of bounded degree graphs and regular graphs. Discret. Math. 345(6), 112850 (2022). https://doi.org/10.1016/j.disc.2022.112850

    Article  MathSciNet  Google Scholar 

  15. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

Download references

Acknowledgement

We thank three anonymous referees for their careful reading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyriac Antony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shalu, M.A., Antony, C. (2024). Star Colouring of Regular Graphs Meets Weaving and Line Graphs. In: Kalyanasundaram, S., Maheshwari, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2024. Lecture Notes in Computer Science, vol 14508. Springer, Cham. https://doi.org/10.1007/978-3-031-52213-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52213-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52212-3

  • Online ISBN: 978-3-031-52213-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics