Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-level Temporal Information Sharing Transformer-Based Feature Reuse Network for Cardiac MRI Reconstruction

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14507))

Abstract

The accurate reconstruction of accelerated Magnetic Resonance Imaging (MRI) brings significant clinical benefits, including improved diagnostic accuracy and reduced examination costs. Traditional cardiac MRI requires repetitive acquisitions over multiple heartbeats, leading to longer acquisition times. Deep learning-based MRI reconstruction methods have made significant progress in accelerating MRI. However, existing methods suffer from the following limitations: (1) Due to the involvement of multiple complex time-series data and image information in the process of heart reconstruction, exploring the nonlinear dependencies between temporal contexts is challenging. (2) Most of the research has neglected weight sharing in iterative frameworks, which prevents better capturing of long-range/non-local information in the data, thus restricting the improvement of model performance. In this paper, we propose a novel Multi-level Temporal Information Sharing Transformer to enhance cardiac MRI reconstruction. Based on the Transformer’s multi-level encoder and decoder architecture, we perform multi-level temporal information feature aggregation across multiple adjacent views, establishing nonlinear dependencies between features and effectively learning crucial information between adjacent cardiac temporal frames. We also incorporate cross-view attention for temporal information interaction and fusion to enhance contextual understanding between adjacent views. Additionally, in the reconstruction process, we introduce a training approach of feature reuse to update weights, enhancing feature fusion in important regions and calculating global feature dependencies with fewer computations. Numerous experiments have indicated that this method is significantly superior to state-of-the-art techniques, thereby holding the potential for widespread application in the clinical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)

    Article  Google Scholar 

  2. Ahmed, A.H., Zhou, R., Yang, Y., Nagpal, P., Salerno, M., Jacob, M.: Free-breathing and ungated dynamic MRI using navigator-less spiral storm. IEEE Trans. Med. Imaging 39(12), 3933–3943 (2020)

    Article  Google Scholar 

  3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  4. Guo, X., Guo, X., Lu, Y.: SSAN: separable self-attention network for video representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12618–12627 (2021)

    Google Scholar 

  5. Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features with 3D residual networks for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3154–3160 (2017)

    Google Scholar 

  6. Ho, J., Kalchbrenner, N., Weissenborn, D., Salimans, T.: Axial attention in multidimensional transformers. arXiv preprint arXiv:1912.12180 (2019)

  7. Jung, H., Ye, J.C., Kim, E.Y.: Improved k-t blast and k-t sense using FOCUSS. Phys. Med. Biol. 52(11), 3201 (2007)

    Article  Google Scholar 

  8. Liang, J., et al.: VRT: a video restoration transformer. arXiv preprint arXiv:2201.12288 (2022)

  9. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)

    Google Scholar 

  10. Lin, J., et al.: Flow-guided sparse transformer for video deblurring. arXiv preprint arXiv:2201.01893 (2022)

  11. Lingala, S.G., Hu, Y., DiBella, E., Jacob, M.: Accelerated dynamic MRI exploiting sparsity and low-rank structure: kt SLR. IEEE Trans. Med. Imaging 30(5), 1042–1054 (2011)

    Article  Google Scholar 

  12. Liu, R., et al.: FuseFormer: Fusing fine-grained information in transformers for video inpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14040–14049 (2021)

    Google Scholar 

  13. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  14. Lyu, J., et al.: Region-focused multi-view transformer-based generative adversarial network for cardiac cine MRI reconstruction. Med. Image Anal. 85, 102760 (2023)

    Article  Google Scholar 

  15. Lyu, J., Sui, B., Wang, C., Tian, Y., Dou, Q., Qin, J.: DuDoCAF: dual-domain cross-attention fusion with recurrent transformer for fast multi-contrast MR Imaging. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 474–484. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_45

    Chapter  Google Scholar 

  16. Murugesan, B., Vijaya Raghavan, S., Sarveswaran, K., Ram, K., Sivaprakasam, M.: Recon-GLGAN: a global-local context based generative adversarial network for MRI reconstruction. In: Knoll, F., Maier, A., Rueckert, D., Ye, J.C. (eds.) MLMIR 2019. LNCS, vol. 11905, pp. 3–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33843-5_1

    Chapter  Google Scholar 

  17. Otazo, R., Candes, E., Sodickson, D.K.: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn. Reson. Med. 73(3), 1125–1136 (2015)

    Article  Google Scholar 

  18. Piergiovanni, A., Kuo, W., Angelova, A.: Rethinking video viTs: sparse video tubes for joint image and video learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2214–2224 (2023)

    Google Scholar 

  19. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR Image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018)

    Article  Google Scholar 

  20. Ramanarayanan, S., Murugesan, B., Ram, K., Sivaprakasam, M.: DC-WCNN: a deep cascade of wavelet based convolutional neural networks for MR Image reconstruction. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1069–1073. IEEE (2020)

    Google Scholar 

  21. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 647–658. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_51

    Chapter  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  23. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper with image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 32–42 (2021)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Wang, C., et al.: CMR\(\times \)Recon: an open cardiac MRI dataset for the competition of accelerated image reconstruction. arXiv preprint arXiv:2309.10836 (2023)

  26. Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8741–8750 (2021)

    Google Scholar 

  27. Xing, Z., Yu, L., Wan, L., Han, T., Zhu, L.: NestedFormer: nested modality-aware transformer for brain tumor segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 140–150. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_14

    Chapter  Google Scholar 

  28. Xing, Z., Dai, Q., Hu, H., Chen, J., Wu, Z., Jiang, Y.G.: SVFormer: semi-supervised video transformer for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18816–18826 (2023)

    Google Scholar 

  29. Yan, S., et al.: Multiview transformers for video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3333–3343 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lyu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, G., Lyu, J., Wang, F., Wang, C., Qin, J. (2024). Multi-level Temporal Information Sharing Transformer-Based Feature Reuse Network for Cardiac MRI Reconstruction. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics