Abstract
Hypersonic object detection and tracking is a necessity for the future of commercial aircraft, space exploration, and air defense sectors. However, hypersonic object detection and tracking in practice is a complex task that is limited by physical, geometrical, and sensor constraints. Atmospheric absorption and scattering, line of sight obstructions, and plasma sheaths around hypersonic objects are just a few factors as to why an adaptive, multiplatform, multimodal system are required for hypersonic object detection and tracking. We review recent papers on detection and communication of hypersonic objects which model hypersonic objects with various solid body geometries, surface materials, and flight patterns to examine electromagnetic radiation interactions of the hypersonic object in the atmospheric medium, as a function of velocity, altitude, and heading. The key findings from these research papers are combined with simple gas and thermal dynamics classical physics models to establish baselines for hypersonic object detection. In this paper, we make a case for the necessity of an adaptive multimodal low-earth orbit network consisting of a constellation of satellites communicating with each other in real time for hypersonic detection and tracking.
Approved for Public Release; Distribution Unlimited: PA CLEARANCE PENDING - DO NOT DISTRIBUTE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ding, Y., et al.: An analysis of radar detection on a plasma sheath covered reentry target. IEEE Trans. Aerosp. Electron. Syst. 57(6), 4255–4268 (2021). https://doi.org/10.1109/TAES.2021.3090910
Jiangting, L., et al.: Influence of hypersonic turbulence in plasma sheath on synthetic aperture radar imaging. IET Microwaves Antennas Propag. 11, 2223–2227 (2017). https://doi.org/10.1049/iet-map.2017.0303
Korotkevich, A.O., et al.: Communication through plasma sheaths. J. Appl. Phys. 102 (2007). https://doi.org/10.1063/1.2794856
Li, J.Q., Hao, L., Li, J.: Theoretical modeling and numerical simulations of plasmas generated by shock waves. Sci. Chin. Technol. Sci. 62(12), 2204–2212 (2019). https://doi.org/10.1007/s11431-018-9402-3
Mifsud, M., et al.: A case study on the aerodynamic heating of a hypersonic vehicle. Aeronaut. J. 116, 873–893 (2012). https://doi.org/10.1017/S0001924000007338
Moran, J.H., et al.: Joule heated hot wall models in hypersonic wind tunnel facilities for energy deposition studies. Aerosp. Sci. Technol. 126, 107627 (2022). https://doi.org/10.1016/j.ast.2022.107627
Of, I., Waves, T., Turbulent, W.A.: Interaction of transverse waves with a turbulent plasma 22 (1966)
Primer, A.T.: Remote radiation detection by electromagnetic air breakdown 4957, 828–834 (2017)
Sha, Y.X., et al.: Analyses of electromagnetic properties of a hypersonic object with plasma sheath. IEEE Trans. Antennas Propag. 67, 2470–2481 (2019). https://doi.org/10.1109/TAP.2019.2891462
Shang, J.J., Yan, H.: High-enthalpy hypersonic flows. In: Advances in Aerodynamics 2 (2020). https://doi.org/10.1186/s42774-020-00041-y
Shaw, J.A., Nugent, P.W.: Physics principles in radiometric infrared imaging of clouds in the atmosphere. Eur. J. Phys. 34 (2013). https://doi.org/10.1088/0143-0807/34/6/S111
Shi, L., et al.: Unconventionally designed tracking loop adaptable to plasma sheath channel for hypersonic vehicles. Sensors (Switzerland) 21, 1–15 (2021). https://doi.org/10.3390/s21010021
Smith, F.G.: Atmospheric Propagation of Radiation Approved for Public Release Atmospheric Propagation of Radiation The Infrared and Electro-Optical, vol. 2
Song, L., et al.: Effect of time-varying plasma sheath on hypersonic vehicle-borne radar target detection. IEEE Sens. J. 21, 16880–16893 (2021). https://doi.org/10.1109/JSEN.2021.3077727
Vayner, B.V., Ferguson, D.C.: Electromagnetic environment radiation around in the plasma the shuttle
Zank, G.P., et al.: The interaction of turbulence with shock waves. AIP Conf. Proc. 1216, 563–567 (2010). https://doi.org/10.1063/1.3395927
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mulhollan, Z., Gamarra, M., Vodacek, A., Hoffman, M. (2024). Essential Properties of a Multimodal Hypersonic Object Detection and Tracking System. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-52670-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52669-5
Online ISBN: 978-3-031-52670-1
eBook Packages: Computer ScienceComputer Science (R0)