Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Silicosis Detection Using Extended Transfer Learning Model

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2023)

Abstract

Silicosis is a prevalent and damaging occupational disease in India. The detection of silicosis on X-ray images heavily relies on the expertise of radiologists, resulting in delayed detection and diagnosis. To overcome this challenge, machine learning-based computer-aided detection methods are being explored. However, due to the lack of publicly available large databases of silicosis images, highly accurate deep-learning models for silicosis detection through X-rays are difficult to obtain. In this study, we propose a method for silicosis detection using transfer learning techniques on X-ray radiographs. We trained and tested well-known deep transfer learning models, including Vgg16, Vgg19, ResNet50, ResNet101, Densenet121, Densenet169, Densenet201, Xception, Mobilnet, InceptionV3, and Efficient B7 models. Our proposed model is based on ResNet50 in which we add additional layers, which achieved an F1 score of 0.8166. Additionally, we applied the Grad-CAM technique to produce heatmap images that highlight the important features extracted from the X-ray images This approach could serve as a feasible alternative in countries with limited access to specialized radiological equipment and trained radiologists for detecting silicosis on X-ray images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas, C.R., Kelley, T.R.: A brief review of silicosis in the United States, Environmental Health Insights, vol. 4 (2010)

    Google Scholar 

  2. Austin, E.K., James, C., Tessier, J.: Early detection methods for silicosis in Australia and internationally: a review of the literature. Int. J. Environ. Res. Public Health 18(15), 8123 (2021)

    Google Scholar 

  3. Zhu, L., Zheng, R., Jin, H., Zhang, Q., Zhang, W.: Automatic detection and recognition of silicosis in chest radiograph. Biomed. Mater. Eng. 24(6), 3389–3395 (2014)

    Google Scholar 

  4. Wang, X., et al.: Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography. Occup. Environ. Med. 77, 597–602 (2020)

    Article  Google Scholar 

  5. Kashika, P.H., Venkatapur, R.B.: Deep learning technique for object detection from panoramic video frames. Int. J. Comput. Theory Eng. 14(1), 20–26 (2022)

    Article  Google Scholar 

  6. Chris, L.A., Mulyawan, B., Dharmawan, A.B.: A Leukocyte Detection System using scale invariant feature transform method. Int. J. Comput. Theory Eng. 8(1), 69–73 (2016)

    Article  Google Scholar 

  7. Jawaid, M.M., Narejo, S., Qureshi, I.A., Pirzada, N.: A review of the state-of-the-art methods for non-calcified plaque detection in cardiac CT angiography. Int. J. Comput. Theory Eng. 10(3), 84–92 (2018)

    Article  Google Scholar 

  8. Cai, C.X., Zhu, B.Y., Chen, H.: Computer-aided diagnosis for pneumoconiosis based on texture analysis on digital chest radiographs. Appl. Mech. Mater. 241–244, 244–247 (2012)

    Article  Google Scholar 

  9. Kermany, D.: Labeled optical coherence tomography (OCT) and chest X-ray images for classification, Mendeley Data. https://data.mendeley.com/datasets/rscbjbr9sj/2

  10. Singh, R., et al.: Deep learning in chest radiography: detection of findings and presence of change. PLOS ONE 13(10), e0204155 (2018)

    Article  Google Scholar 

  11. Rajpurkar, P., et al.: Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practising radiologists. PLOS Med. 15(11), e1002686 (2018)

    Article  Google Scholar 

  12. Wang, X., et al.: Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography. Occup. Environ. Med. 77(9), 597–602 (2020)

    Article  Google Scholar 

  13. Hall, E.L., Crawford, W.O., Roberts, F.E.: Computer classification of pneumoconiosis from radiographs of coal workers. IEEE Trans. Biomed. Eng. BME-22(6), 518–527 (1975)

    Google Scholar 

  14. Ledley, R.S., Huang, H.K., Rotolo, L.S.: A texture analysis method in classification of Coal Workers’ pneumoconiosis. Comput. Biol. Med. 5(1–2), 53–67 (1975)

    Article  Google Scholar 

  15. Savol, A.M., Li, C.C., Hoy, R.J.: Computer-aided recognition of small rounded pneumoconiosis opacities in chest X-rays. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2(5), 479–482 (1980)

    Google Scholar 

  16. Okumura, E., Kawashita, I., Ishida, T.: Computerized analysis of pneumoconiosis in digital chest radiography: effect of artificial neural network trained with Power Spectra. J. Digit. Imaging 24(6), 1126–1132 (2010)

    Article  Google Scholar 

  17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision 128(2), 336–359 (2020)

    Article  Google Scholar 

  18. Hao, C., et al.: Balanced convolutional neural networks for pneumoconiosis detection. Int. J. Environ. Res. Public Health 18(17), 9091 (2021)

    Article  Google Scholar 

  19. Yosinski, J., et al.: How transferable are featured in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  20. Wu, Z., Shen, C., van den Hengel, A.: Wider or deeper: revisiting the ResNet model for visual recognition. Pattern Recogn. 90, 119–133 (2019)

    Article  Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv.org, April 2015. http://arxiv.org/abs/1409.1556

  22. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for Mobile Vision Applications. arXiv.org, April 2017. https://arxiv.org/abs/1704.04861

  23. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  24. Bansal, M., Kumar, M., Sachdeva, M., Mittal, A.: Transfer learning for image classification using VGG19: Caltech-101 Image Data Set. J. Ambient Intell. Humanized Comput. 14, 3609–3620 (2021)

    Article  Google Scholar 

  25. Jinsakul, N., Tsai, C.-F., Tsai, C.-E., Wu, P.: Enhancement of deep learning in image classification performance using exception with the Swish activation function for colorectal polyp preliminary screening. Mathematics 7(12), 1170 (2019)

    Article  Google Scholar 

  26. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  27. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv.org, September 2020. https://arxiv.org/abs/1905.11946v5

  28. Bhandary, A., et al.: Deep-learning framework to detect lung abnormality-a study with chest X-Ray and lung CT scan images. Pattern Recogn. Lett. 129, 271–278 (2020)

    Article  Google Scholar 

  29. Vrbančič, G., Pecnik, S., Podgorelec, V.: Hyper-parameter optimization of convolutional neural networks for classifying COVID-19 X-ray images. J. Comput. Sci. Inf. Syst. 19(00), 56–56 (2021)

    Google Scholar 

  30. Ravishankar, H., et al.: Understanding the mechanisms of deep transfer learning for medical images. In: Proceedings of the International Conference on Medical Imaging with Deep Learning, pp. 188–196 (2016)

    Google Scholar 

  31. Alzubaidi, L., et al.: Towards a better understanding of transfer learning for medical imaging: a case study. Appl. Sci. 10(13), 4523 (2020)

    Article  Google Scholar 

  32. Ahmed, S.E., Amiri, S., Doksum, K.: Ensemble linear subspace analysis of high-dimensional data. Entropy 23(3), 324 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The present study received funding from the Government of Rajasthan under research project number 1000113614, entitled “Artificial intelligence (AI)-based model to assist radiologists in silicosis screening using chest X-rays.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Harjule .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, G.K., Harjule, P., Agarwal, B., Kumar, R. (2024). Silicosis Detection Using Extended Transfer Learning Model. In: Santosh, K., et al. Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2023. Communications in Computer and Information Science, vol 2027. Springer, Cham. https://doi.org/10.1007/978-3-031-53085-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53085-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53084-5

  • Online ISBN: 978-3-031-53085-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics