Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Token Selection and Fusion Network for Multimodal Sentiment Analysis

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14556))

Included in the following conference series:

  • 1031 Accesses

Abstract

Multimodal sentiment analysis aims to predict human sentiment polarity with multiple modalities. Most existing methods focus on directly integrating original modal features into multimodal fusion, ignoring the redundancy and heterogeneity across modalities. In this paper, we propose a simple but efficient Adaptive Token Selection and Fusion Network (ATSFN) to mitigate the effect of redundancy and heterogeneity. ATSFN employs adaptive trainable tokens to extract unimodal informative tokens and perform dynamic multimodal token fusion. Specifically, we first integrate critical information from original features into adaptive selection tokens through token selection transformers. Sentiment features flow through these smaller sequences of tokens to capture important information while reducing redundancy. Next, we introduce a token fusion transformer to fuse multimodal features dynamically. It adaptively estimates the unique contribution of each modality to sentiment tendencies through learnable fusion tokens. Experiments on two benchmark datasets demonstrate that our proposed approach achieves competitive performance and significant improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baltrušaitis, T., Robinson, P., Morency, L.P.: Openface: an open source facial behavior analysis toolkit. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE (2016)

    Google Scholar 

  2. Carion, Nicolas, Massa, Francisco, Synnaeve, Gabriel, Usunier, Nicolas, Kirillov, Alexander, Zagoruyko, Sergey: End-to-End Object Detection with Transformers. In: Vedaldi, Andrea, Bischof, Horst, Brox, Thomas, Frahm, Jan-Michael. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Degottex, G., Kane, J., Drugman, T., Raitio, T., Scherer, S.: Covarep-a collaborative voice analysis repository for speech technologies. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2014)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv preprint. arXiv:1810.04805 (2018)

  5. Du, Pengfei, Gao, Yali, Li, Xiaoyong: Bi-attention Modal Separation Network for Multimodal Video Fusion. In: Þór Jónsson, Björn., Gurrin, Cathal, Tran, Minh-Triet., Dang-Nguyen, Duc-Tien., Hu, Anita Min-Chun., Huynh Thi Thanh, Binh, Huet, Benoit (eds.) MMM 2022. LNCS, vol. 13141, pp. 585–598. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98358-1_46

    Chapter  Google Scholar 

  6. Han, W., Chen, H., Gelbukh, A., Zadeh, A., Morency, L.P., Poria, S.: Bi-bimodal modality fusion for correlation-controlled multimodal sentiment analysis. In: Proceedings of the 2021 International Conference on Multimodal Interaction, pp. 6–15 (2021)

    Google Scholar 

  7. Han, W., Chen, H., Poria, S.: Improving multimodal fusion with hierarchical mutual information maximization for multimodal sentiment analysis. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (Nov 2021)

    Google Scholar 

  8. Hazarika, D., Zimmermann, R., Poria, S.: Misa: Modality-invariant and-specific representations for multimodal sentiment analysis. In: Proceedings of the 28th ACM International Conference on Multimedia (2020)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Iashin, V., Xie, W., Rahtu, E., Zisserman, A.: Sparse in space and time: Audio-visual synchronisation with trainable selectors. In: 33rd British Machine Vision Conference 2022, BMVC 2022, London, UK, November, pp. 21–24, 2022. BMVA Press (2022)

    Google Scholar 

  11. Jin, T., Huang, S., Li, Y., Zhang, Z.: Dual low-rank multimodal fusion. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 377–387 (2020)

    Google Scholar 

  12. Kumar, A., Vepa, J.: Gated mechanism for attention based multi modal sentiment analysis. In: ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2020)

    Google Scholar 

  13. Lin, Z., et al.: Modeling intra-and inter-modal relations: Hierarchical graph contrastive learning for multimodal sentiment analysis. In: Proceedings of the 29th International Conference on Computational Linguistics (2022)

    Google Scholar 

  14. Morency, L.P., Mihalcea, R., Doshi, P.: Towards multimodal sentiment analysis: Harvesting opinions from the web. In: Proceedings of the 13th International Conference on Multimodal Interfaces, pp. 169–176 (2011)

    Google Scholar 

  15. Nagrani, A., Yang, S., Arnab, A., Jansen, A., Schmid, C., Sun, C.: Attention bottlenecks for multimodal fusion. Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  16. Nguyen, D., Nguyen, K., Sridharan, S., Dean, D., Fookes, C.: Deep spatio-temporal feature fusion with compact bilinear pooling for multimodal emotion recognition. Comput. Vis. Image Underst. 174, 33–42 (2018)

    Article  Google Scholar 

  17. Nojavanasghari, B., Gopinath, D., Koushik, J., Baltrušaitis, T., Morency, L.P.: Deep multimodal fusion for persuasiveness prediction. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction (2016)

    Google Scholar 

  18. Poria, S., Chaturvedi, I., Cambria, E., Hussain, A.: Convolutional MKL based multimodal emotion recognition and sentiment analysis. In: 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE (2016)

    Google Scholar 

  19. Rahman, W., et al.: Integrating multimodal information in large pretrained transformers. In: Proceedings of the Conference. Association for Computational Linguistics. Meeting. vol. 2020. NIH Public Access (2020)

    Google Scholar 

  20. Sun, H., Wang, H., Liu, J., Chen, Y.W., Lin, L.: CubeMLP: An MLP-based model for multimodal sentiment analysis and depression estimation. In: Proceedings of the 30th ACM International Conference on Multimedia (2022)

    Google Scholar 

  21. Sun, Z., Sarma, P., Sethares, W., Liang, Y.: Learning relationships between text, audio, and video via deep canonical correlation for multimodal language analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34 (2020)

    Google Scholar 

  22. Tsai, Y.H.H., Bai, S., Liang, P.P., Kolter, J.Z., Morency, L.P., Salakhutdinov, R.: Multimodal transformer for unaligned multimodal language sequences. In: Proceedings of the Conference. Association for Computational Linguistics. Meeting. vol. 2019. NIH Public Access (2019)

    Google Scholar 

  23. Tsai, Y.H.H., Liang, P.P., Zadeh, A., Morency, L.P., Salakhutdinov, R.: Learning factorized multimodal representations. In: International Conference on Learning Representations (2019)

    Google Scholar 

  24. Vaswani, A., Shazeer, et al.: Attention is all you need. In: Advances in Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  25. Wang, Y., Shen, Y., Liu, Z., Liang, P.P., Zadeh, A., Morency, L.P.: Words can shift: Dynamically adjusting word representations using nonverbal behaviors. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33 (2019)

    Google Scholar 

  26. Wu, C.H., Liang, W.B.: Emotion recognition of affective speech based on multiple classifiers using acoustic-prosodic information and semantic labels. IEEE Trans. Affect. Comput. 2(1), 10–21 (2010)

    Google Scholar 

  27. Yu, W., Xu, H., Yuan, Z., Wu, J.: Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35 (2021)

    Google Scholar 

  28. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (2017)

    Google Scholar 

  29. Zadeh, A., Zellers, R., Pincus, E., Morency, L.P.: Multimodal sentiment intensity analysis in videos: facial gestures and verbal messages. IEEE Intell. Syst. 31(6), 82–88 (2016)

    Article  Google Scholar 

  30. Zadeh, A.B., Liang, P.P., Poria, S., Cambria, E., Morency, L.P.: Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (2018)

    Google Scholar 

  31. Zhu, L., Zhu, Z., Zhang, C., Xu, Y., Kong, X.: Multimodal sentiment analysis based on fusion methods: a survey. Inf. Fusion 95, 306–325 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.62272025 and No.U22B2021) and the Fund of the State Key Laboratory of Software Development Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Lu, M., Guo, Z., Zhang, X. (2024). Adaptive Token Selection and Fusion Network for Multimodal Sentiment Analysis. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14556. Springer, Cham. https://doi.org/10.1007/978-3-031-53311-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53311-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53310-5

  • Online ISBN: 978-3-031-53311-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics