Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generalized Densest Subgraph in Multiplex Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1143))

Included in the following conference series:

  • 873 Accesses

Abstract

Finding dense subgraphs of a large network is a fundamental problem in graph mining that has been studied extensively both for its theoretical richness and its many practical applications over the last five decades. However, most existing studies have focused on graphs with a single type of connection. In applications such as biological, social, and transportation networks, interactions between objects span multiple aspects, yielding multiplex graphs. Existing dense subgraph mining methods in multiplex graphs consider the same importance for different types of connections, while in real-world applications, one relation type can be noisy, insignificant, or irrelevant. Moreover, they are limited to the edge-density measure, unable to change the emphasis on larger/smaller degrees depending on the application. To this end, we define a new family of dense subgraph objectives, parametrized by two variables p and \(\beta \), that can (1) consider different importance weights for each relation type, and (2) change the emphasis on the larger/smaller degrees, depending on the application. Due to the NP-hardness of this problem, we first extend the FirmCore, k-core counterpart in multiplex graphs, to layer-weighted multiplex graphs, and based on it, we propose two polynomial-time approximation algorithms for the generalized densest subgraph problem, when \(p \ge 1\) and the general case. Our experimental results show the importance of considering different weights for different relation types and the effectiveness and efficiency of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azimi-Tafreshi, N., Gomez-Garde, J., Dorogovtsev, S.N.: k-corepercolation on multiplex networks. Phys. Rev. E 90(3) (2014). ISSN 1550-2376

    Google Scholar 

  2. Behrouz, A., Hashemi, F.: CS-MLGCN: multiplex graph convolutional networks for community search in multiplex networks. In: Proceedings of the 31st ACM International Conference on Information and Knowledge Management, CIKM ’22, pp. 3828–3832. New York, NY, USA (2022). Association for Computing Machinery. ISBN 9781450392365. https://doi.org/10.1145/3511808.3557572

  3. Behrouz, A., Seltzer, M.: Anomaly detection in multiplex dynamic networks: from blockchain security to brain disease prediction. In: NeurIPS 2022 Temporal Graph Learning Workshop (2022). https://openreview.net/forum?id=UDGZDfwmay

  4. Behrouz, A., Seltzer, M.: Anomaly detection in human brain via inductive learning on temporal multiplex networks. In: Machine Learning for Healthcare Conference, vol. 219. PMLR (2023)

    Google Scholar 

  5. Behrouz, A., Seltzer, M.: ADMIRE++: explainable anomaly detection in the human brain via inductive learning on temporal multiplex networks. In: ICML 3rd Workshop on Interpretable Machine Learning in Healthcare (IMLH) (2023). https://openreview.net/forum?id=t4H8acYudJ

  6. Behrouz, A., Hashemi, F., Lakshmanan, L.V.S.: Firmtruss community search in multilayer networks. Proc. VLDB Endow. 16(3), 505–518 (2022). ISSN 2150-8097. https://doi.org/10.14778/3570690.3570700

  7. Cardillo, A., et al.: Emergence of network features from multiplexity. Sci. Rep. 3(1), 1–6 (2013)

    Article  Google Scholar 

  8. Celli, F., Di Lascio, F.M.L., Magnani, M., Pacelli, B., Rossi, L.: Social network data and practices: the case of friendfeed. In: Chai, S.-K., Salerno, J.J., Mabry, P.L. (eds.) SBP 2010. LNCS, vol. 6007, pp. 346–353. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12079-4_43

    Chapter  Google Scholar 

  9. Chekuri, C., Torres, M.R.: On the generalized mean densest subgraph problem: complexity and algorithms. arXiv preprint arXiv:2306.02172 (2023)

  10. De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3(1) (2013). ISSN 2045-2322

    Google Scholar 

  11. De Domenico, M., Porter, M.A., Arenas, A.: MuxViz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. 3(2), 159–176 (2014). ISSN 2051-1329. https://doi.org/10.1093/comnet/cnu038

  12. De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015)

    Article  Google Scholar 

  13. Du, X., Jin, R., Ding, L., Lee, V.E., Thornton, J.H.: Migration motif: a spatial - temporal pattern mining approach for financial markets. In: KDD, pp. 1135–1144 (2009)

    Google Scholar 

  14. Faragó, A.: A general tractable density concept for graphs. Math. Comput. Sci. 1(4), 689–699 (2008)

    Article  MathSciNet  Google Scholar 

  15. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: MotifCut: regulatory motifs finding with maximum density subgraphs. Bioinformatics (Oxford, England), 22(14) (2006)

    Google Scholar 

  16. Galimberti, E., Bonchi, F., Gullo, F.: Core decomposition and densest subgraph in multilayer networks. In: Conference on Information and Knowledge Management (CIKM) (2017)

    Google Scholar 

  17. Galimberti, E., Bonchi, F., Gullo, F., Lanciano, T.: Core decomposition in multilayer networks: theory, algorithms, and applications. ACM Trans. Knowl. Discov. Data 14(1) (2020). ISSN 1556-4681. https://doi.org/10.1145/3369872

  18. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30-55 (1989). ISSN 0097-5397. https://doi.org/10.1137/0218003

  19. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: VLDB, pp. 721–732 (2005)

    Google Scholar 

  20. Goldberg, A.: Finding a maximum density subgraph. Technical report (1984)

    Google Scholar 

  21. Zhenqiang Gong, N., et al.: Evolution of social-attribute networks: Measurements, modeling, and implications using google+. In: Internet Measurement Conference, pp. 131–144, NY, USA. ACM (2012)

    Google Scholar 

  22. Hashemi, F., Behrouz, A., Lakshmanan, L.V.S.: Firmcore decomposition of multilayer networks. In: Proceedings of the ACM Web Conference 2022, WWW ’22, page 1589-1600, New York, NY, USA (2022). Association for Computing Machinery. ISBN 9781450390965. https://doi.org/10.1145/3485447.3512205

  23. Jethava, V., Beerenwinkel, N.: Finding dense subgraphs in relational graphs. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) Machine Learning and Knowledge Discovery in Databases. LNCS (LNAI), vol. 9285, pp. 641–654. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_39

    Chapter  Google Scholar 

  24. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2, 203–271 (2014). ISSN 2051-1310. https://doi.org/10.1093/comnet/cnu016

  25. Lanciano, T., Miyauchi, A., Fazzone, A., Bonchi, F.: A survey on the densest subgraph problem and its variants (2023)

    Google Scholar 

  26. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web 1(1), 5-es (2007). ISSN 1559-1131

    Google Scholar 

  27. Omodei, E., De Domenico, M., Arenas, A.: Characterizing interactions in online social networks during exceptional events. Front. Phys. 3, 59 (2015). ISSN 2296-424X. https://doi.org/10.3389/fphy.2015.00059

  28. Veldt, N., Benson, A.R., Kleinberg, J.: The generalized mean densest subgraph problem. In: Proceedings of the 27th ACM SIGKDD, KDD ’21, pp. 1604–1614, New York, NY, USA (2021). ACM. https://doi.org/10.1145/3447548.3467398

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Behrouz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Behrouz, A., Hashemi, F. (2024). Generalized Densest Subgraph in Multiplex Networks. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-031-53472-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53472-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53471-3

  • Online ISBN: 978-3-031-53472-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics