Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Toward Detection of Fake News Using Sentiment Analysis for Albanian News Articles

  • Conference paper
  • First Online:
Advances in Internet, Data & Web Technologies (EIDWT 2024)

Abstract

The public’s concern of fake news has grown due to its potential to challenge social cohesion, and foster mistrust of the government and society in general. Recent research has revealed a concerning trend in which a sizable portion of the population has an inability to distinguish between authentic and non-authentic news, moreover in Western Balkans 75% of the population tend to believe in fake news. Writers of fake news often employ certain strategies in their articles that, from a sentiment perspective, exhibit a higher degree of polarity in comparison to authentic news articles. The rapid growth of online communities in Albania have given rise to fake news risks, however there is a limited body of research on the subject matter. In this research we will leverage the sentiment analysis techniques through feature engineering to identify the characteristics of sentiment polarity of fake news in Albanian articles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Newman, N., Fletcher, R., Kalogeropoulos, A., Levy, D., Nielsen, R.K.: Reuters Institute Digital News Report 2018, Rochester, NY, 14 June 2018. https://papers.ssrn.com/abstract=3245355. Accessed 08 Nov 2023

  2. Kula, S., Choraś, M., Kozik, R., Ksieniewicz, P., Woźniak, M.: Sentiment analysis for fake news detection by means of neural networks. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12140, pp. 653–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50423-6_49

    Chapter  Google Scholar 

  3. Zannettou, S., Sirivianos, M., Blackburn, J., Kourtellis, N.: The web of false information: rumors, fake news, hoaxes, clickbait, and various other shenanigans. J. Data Inf. Qual. 11(3), 1–37 (2019). https://doi.org/10.1145/3309699

    Article  Google Scholar 

  4. McGonagle, T.: ‘Fake news’: false fears or real concerns? Netherlands Q. Hum. Rights 35(4), 203–209 (2017). https://doi.org/10.1177/0924051917738685

    Article  Google Scholar 

  5. Botha, J., Pieterse, H.: Fake News and Deepfakes: A Dangerous Threat for 21st Century Information Security, March 2020

    Google Scholar 

  6. Stamatoukou, E.: BIRN Albania and SCiDEV Present Studies on Disinformation, Propaganda and Fake News. BIRN. https://birn.eu.com/news-and-events/birn-albania-and-scidev-present-studies-on-disinformation-propaganda-and-fake-news/. Accessed 08 Nov 2023

  7. Kastrati, M., Biba, M.: Natural language processing for Albanian: a state-of-the-art survey. Int. J. Electr. Comput. Eng. (IJECE) 12(6), 6432 (2022). https://doi.org/10.11591/ijece.v12i6.pp6432-6439

    Article  Google Scholar 

  8. Canhasi, E., Shijaku, R., Berisha, E.: Albanian fake news detection. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 21(5), 1–24 (2022). https://doi.org/10.1145/3487288

    Article  Google Scholar 

  9. Hoti, A.H., Hoti, M.H., Hoti, H., Salihu, A.: Identifying Fake News written on Albanian language in social media using Naïve Bayes, SVM, Logistic Regression, Decision Tree and Random Forest algorithms. In: 2022 11th Mediterranean Conference on Embedded Computing (MECO), June 2022, pp. 1–6 (2022). https://doi.org/10.1109/MECO55406.2022.9797147

  10. Ibrahim, M.: Sentiment analysis for fake news detection in online media networks: a survey, fusion techniques and quality metrics. Neutrosophic Inf. Fus. 1(2), 44–68 (2023). https://doi.org/10.54216/NIF.010205

    Article  Google Scholar 

  11. Alonso, M.A., Vilares, D., Gómez-Rodríguez, C., Vilares, J.: Sentiment analysis for fake news detection. Electronics 10(11), 1348 (2021). https://doi.org/10.3390/electronics10111348

    Article  Google Scholar 

  12. Li, J., Xiao, L.: Multi-emotion recognition using multi-EmoBERT and emotion analysis in fake news. In: Proceedings of the 15th ACM Web Science Conference 2023, WebSci 2023, April 2023, pp. 128–135. Association for Computing Machinery, New York (2023). https://doi.org/10.1145/3578503.3583595

  13. Ding, L., Ding, L., Sinnott, R.O.: Fake news classification of social media through sentiment analysis. In: Nepal, S., Cao, W., Nasridinov, A., Bhuiyan, M.D.Z.A., Guo, X., Zhang, L.-J. (eds.) BIGDATA 2020. LNCS, vol. 12402, pp. 52–67. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59612-5_5

    Chapter  Google Scholar 

  14. Bhutani, B., Rastogi, N., Sehgal, P., Purwar, A.: Fake news detection using sentiment analysis. In: 2019 Twelfth International Conference on Contemporary Computing (IC3), August 2019, pp. 1–5 (2019). https://doi.org/10.1109/IC3.2019.8844880

  15. Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L.: Feature engineering [software development]. In: Proceedings Ninth International Workshop on Software Specification and Design, April 1998, pp. 162–164 (1998). https://doi.org/10.1109/IWSSD.1998.667935

  16. Khurana, U., Samulowitz, H., Turaga, D.: Feature engineering for predictive modeling using reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Art. no. 1, April 2018. https://doi.org/10.1609/aaai.v32i1.11678

  17. Ghosh, M., Sanyal, G.: Analysing sentiments based on multi feature combination with supervised learning. IJDMMM 11(4), 391 (2019). https://doi.org/10.1504/IJDMMM.2019.102728

    Article  Google Scholar 

  18. Zou, H., Tang, X., Xie, B., Liu, B.: Sentiment classification using machine learning techniques with syntax features. In: 2015 International Conference on Computational Science and Computational Intelligence (CSCI), December 2015, pp. 175–179 (2015). https://doi.org/10.1109/CSCI.2015.44

  19. Catelli, R., Pelosi, S., Esposito, M.: Lexicon-based vs. BERT-based sentiment analysis: a comparative study in Italian. Electronics 11(3), 374 (2022). https://doi.org/10.3390/electronics11030374

    Article  Google Scholar 

  20. Iwendi, C., Mohan, S., Khan, S., Ibeke, E., Ahmadian, A., Ciano, T.: Covid-19 fake news sentiment analysis. Comput. Electr. Eng. 101, 107967 (2022). https://doi.org/10.1016/j.compeleceng.2022.107967

  21. Subramanian, M., Sathiskumar, V.E., Deepalakshmi, G., Cho, J., Manikandan, G.: A survey on hate speech detection and sentiment analysis using machine learning and deep learning models. Alexandria Eng. J. 80, 110–121 (2023). https://doi.org/10.1016/j.aej.2023.08.038

    Article  Google Scholar 

  22. Cui, L., Wang, S., Lee, D.: SAME: sentiment-aware multi-modal embedding for detecting fake news. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019, January 2020, pp. 41–48. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3341161.3342894

  23. Çano, E.: AlbMoRe: a corpus of movie reviews for sentiment analysis in Albanian. arXiv, 14 June 2023. https://doi.org/10.48550/arXiv.2306.08526

  24. Kadriu, F., Murtezaj, D., Gashi, F., Ahmedi, L., Kurti, A., Kastrati, Z.: Human-annotated dataset for social media sentiment analysis for Albanian language. Data Brief 43, 108436 (2022). https://doi.org/10.1016/j.dib.2022.108436

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besjana Muraku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muraku, B., Xiao, L., Meçe, E.K. (2024). Toward Detection of Fake News Using Sentiment Analysis for Albanian News Articles. In: Barolli, L. (eds) Advances in Internet, Data & Web Technologies. EIDWT 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 193. Springer, Cham. https://doi.org/10.1007/978-3-031-53555-0_55

Download citation

Publish with us

Policies and ethics