Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning Graph Configuration Spaces with Graph Embedding in Engineering Domains

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14506))

  • 566 Accesses

Abstract

In various domains, engineers face the challenge of optimising system configurations while considering numerous constraints. A common goal is not to identify the best configuration as fast as possible, but rather to find a useful set of very good configurations in a given time for further elaboration by human engineers. Existing techniques for exploring large configuration spaces work well on Euclidean configuration spaces (e.g., with Boolean and numerical configuration decisions). However, it is unclear to what extent they are applicable to configuration problems where solutions are represented as graphs – a common representation in many engineering disciplines. To investigate this problem, we propose an adaptation of existing techniques for Euclidean configurations, to graph configuration spaces by applying graph embedding. We demonstrate the feasibility of this adapted pipeline and conduct a controlled experiment to estimate its efficiency. We apply our approach to a sample case of HVAC (Heating, Ventilation, and Air-Conditioning) systems in 40,000 simulated houses. By first learning the configuration space from a small number of simulations, we can identify 75% of the best configurations within 7,508 simulations compared to 29,725 simulations without our approach. That is a speed-up of 4.0\(\times \) and saves more than 15 days if one simulation takes about one minute, as in our experimental set-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Building Ventilation - MATLAB Simulink. https://www.mathworks.com/help/simscape/ug/building-ventilation.html. Accessed 10 May 2023

  2. MATLAB Simulink - Simulation and Model-Based Design. https://uk.mathworks.com/products/simulink.html. Accessed 10 May 2023

  3. https://github.com/mittermm/LEGCS. Accessed 10 May 2023

  4. Acher, M., et al.: Learning very large configuration spaces: what matters for linux kernel sizes. Inria Rennes-Bretagne Atlantique. hal-02314830 (2019)

    Google Scholar 

  5. Cai, C., Wang, Y.: A simple yet effective baseline for non-attributed graph classification. arXiv:1811.03508 (2022)

  6. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  7. Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K.: Machine learning on graphs: a model and comprehensive taxonomy. J. Mach. Learn. Res. 23, 89:1–89:64 (2022)

    Google Scholar 

  8. Chica, M., Juan, A.A., Bayliss, C., Cordon, O., Kelton, D.: Why simheuristics? benefits, limitations, and best practices when combining metaheuristics with simulation. In: Statistics and Operations Research Transactions (2020)

    Google Scholar 

  9. Church, R.L., Baez, C.A.: Generating optimal and near-optimal solutions to facility location problems. Environ. Plan. B: Urban Anal. City Sci. 47(6), 1014–1030 (2020)

    Google Scholar 

  10. Easterbrook, S., Singer, J., Storey, M.A.D., Damian, D.E.: Selecting empirical methods for software engineering research. In: Guide to Advanced Empirical Software Engineering, pp. 285–311. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-84800-044-5_11

  11. Eppstein, D., Kurz, D.: \( k \)-best solutions of MSO problems on tree-decomposable graphs. In: 12th International Symposium on Parameterized and Exact Computation (IPEC) (2017)

    Google Scholar 

  12. Farahani, R.Z., Miandoabchi, E., Szeto, W.Y., Rashidi-Bajgan, H.: A review of urban transportation network design problems. Eur. J. Oper. Res. 229(2), 281–302 (2013)

    Article  MathSciNet  Google Scholar 

  13. Glinz, M.: On non-functional requirements. In: International Requirements Engineering Conference (RE), pp. 21–26 (2007)

    Google Scholar 

  14. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl. Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  15. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engineering. In: Guide to Advanced Empirical Software Engineering, pp. 201–228. Springer, Heidelberg (2008)

    Google Scholar 

  16. Juan, A.A., Kelton, W.D., Currie, C.S.M., Faulin, J.: Simheuristics applications: dealing with uncertainty in logistics, transportation, and other supply chain areas. In: WSC, pp. 3048–3059. IEEE (2018)

    Google Scholar 

  17. Karunasingha, D.S.K.: Root mean square error or mean absolute error? use their ratio as well. Inf. Sci. 585, 609–629 (2022)

    Article  Google Scholar 

  18. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw. Sci. 5(1), 6 (2020)

    Article  Google Scholar 

  19. Liaw, A., Wiener, M.: Classification and Regression by randomForest. R News 2(3), 18–22 (2002)

    Google Scholar 

  20. Lopes, R., Tutenel, T., Smelik, R.M., De Kraker, K.J., Bidarra, R.: A constrained growth method for procedural floor plan generation. In: Proceedings of International Conference on Intelligent Games Simulation, pp. 13–20 (2010)

    Google Scholar 

  21. Makarov, I., Kiselev, D., Nikitinsky, N., Subelj, L.: Survey on graph embeddings and their applications to machine learning problems on graphs. PeerJ Comput. Sci. 7, e357 (2021)

    Article  Google Scholar 

  22. Miao, S., Liu, M., Li, P.: Interpretable and generalizable graph learning via stochastic attention mechanism. In: International Conference on Machine Learning, pp. 15524–15543. PMLR (2022)

    Google Scholar 

  23. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  24. Peng, Y., Choi, B., Jianliang, X.: Graph learning for combinatorial optimization: a survey of state-of-the-art. Data Sci. Eng. 6(2), 119–141 (2021)

    Article  Google Scholar 

  25. Pereira, J.A., Acher, M., Martin, H., Jézéquel, J.M., Botterweck, G., Ventresque, A.: Learning software configuration spaces: a systematic literature review. J. Syst. Softw. 182, 111044 (2021)

    Article  Google Scholar 

  26. Pienta, R.S., Abello, J., Kahng, M., Chau, D.H.: Scalable graph exploration and visualization: sensemaking challenges and opportunities. In: International Conference on Big Data and Smart Computing (BIGCOMP), pp. 271–278. IEEE Computer Society (2015)

    Google Scholar 

  27. Rozemberczki, B., Kiss, O., Sarkar, R.: Karate club: an API oriented open-source python framework for unsupervised learning on graphs. In: International Conference on Information and Knowledge Management (CIKM), pp. 3125–3132. ACM (2020)

    Google Scholar 

  28. Shaw, M.: Writing good software engineering research paper. In Proceedings of the 25th International Conference on Software Engineering, pp. 726–737. IEEE Computer Society (2003)

    Google Scholar 

  29. Siegmund, N., et al.: Scalable prediction of non-functional properties in software product lines. In: SPLC (2011)

    Google Scholar 

  30. Wang, X., Bo, D., Shi, C., Fan, S., Ye, Y., Philip, S.Y.: A survey on heterogeneous graph embedding: methods, techniques, applications and sources. IEEE Trans. Big Data 9(2), 415–436 (2022)

    Article  Google Scholar 

  31. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Science Foundation Ireland grant 13/RC/2094_P2 to Lero - the Science Foundation Ireland Research Centre for Software (www.lero.ie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mittermaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mittermaier, M., Saber, T., Botterweck, G. (2024). Learning Graph Configuration Spaces with Graph Embedding in Engineering Domains. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14506. Springer, Cham. https://doi.org/10.1007/978-3-031-53966-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53966-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53965-7

  • Online ISBN: 978-3-031-53966-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics