Abstract
The acceptability of AI decisions and the efficiency of AI-human interaction become particularly significant when AI is incorporated into Critical Infrastructures (CI). To achieve this, eXplainable AI (XAI) modules must be integrated into the AI workflow. However, by design, XAI reveals the inner workings of AI systems, posing potential risks for privacy leaks and enhanced adversarial attacks. In this literature review, we explore the complex interplay of explainability, privacy, and security within trustworthy AI, highlighting inherent trade-offs and challenges. Our research reveals that XAI leads to privacy leaks and increases susceptibility to adversarial attacks. We categorize our findings according to XAI taxonomy classes and provide a concise overview of the corresponding fundamental concepts. Furthermore, we discuss how XAI interacts with prevalent privacy defenses and addresses the unique requirements of the security domain. Our findings contribute to the growing literature on XAI in the realm of CI protection and beyond, paving the way for future research in the field of trustworthy AI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 308–318 (2016). https://doi.org/10.1145/2976749.2978318
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052
Aïvodji, U., Bolot, A., Gambs, S.: Model extraction from counterfactual explanations. arXiv preprint arXiv:2009.01884 (2020)
Alvarez Melis, D., Jaakkola, T.: Towards robust interpretability with self-explaining neural networks. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015). https://doi.org/10.1371/journal.pone.0130140
Bhusal, D., Rastogi, N.: SoK: modeling explainability in security monitoring for trust, privacy, and interpretability. arXiv preprint arXiv:2210.17376 (2022)
Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., Tramèr, F.: Membership inference attacks from first principles. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 1897–1914 (2022). https://doi.org/10.1109/SP46214.2022.9833649
Carvalho, D., Pereira, E., Cardoso, J.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8), 832 (2019). https://doi.org/10.3390/electronics8080832
Choquette-Choo, C.A., Tramer, F., Carlini, N., Papernot, N.: Label-only membership inference attacks. In: Proceedings of the 38th International Conference on Machine Learning, pp. 1964–1974. PMLR (2021)
Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influence: theory and experiments with learning systems. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 598–617 (2016). https://doi.org/10.1109/SP.2016.42
De La Torre Parra, G., Selvera, L., Khoury, J., Irizarry, H., Bou-Harb, E., Rad, P.: Interpretable federated transformer log learning for cloud threat forensics. In: Proceedings 2022 Network and Distributed System Security Symposium. Internet Society, San Diego, CA, USA (2022). https://doi.org/10.14722/ndss.2022.23102
Dong, T., Li, S., Qiu, H., Lu, J.: An interpretable federated learning-based network intrusion detection framework. arXiv preprint arXiv:2201.03134 (2022)
European Commission: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance) (2016). https://eur-lex.europa.eu/eli/reg/2016/679/oj
Franco, D., Oneto, L., Navarin, N., Anguita, D.: Toward learning trustworthily from data combining privacy, fairness, and explainability: an application to face recognition. Entropy 23(8), 1047 (2021). https://doi.org/10.3390/e23081047
Guo, W., Mu, D., Xu, J., Su, P., Wang, G., Xing, X.: LEMNA: explaining deep learning based security applications. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 364–379. CCS 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3243734.3243792
Gürtler, M., Zöllner, M.: Tuning white box model with black box models: transparency in credit risk modeling. Available at SSRN 4433967 (2023)
High-Level Expert Group on AI: Ethics guidelines for trustworthy AI. Tech. rep., European Commission, Brussels (2019). https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
ISO, IEC: ISO/IEC 27001:2022(en), Information security, cybersecurity and privacy protection — Information security management systems — Requirements (2022)
Izzo, Z., Yoon, J., Arik, S.O., Zou, J.: Provable membership inference privacy. In: Workshop on Trustworthy and Socially Responsible Machine Learning, NeurIPS 2022 (2022)
Jiang, H., Kim, B., Guan, M., Gupta, M.: To trust or not to trust a classifier. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)
Kariyappa, S., Qureshi, M.K.: Defending against model stealing attacks with adaptive misinformation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2020)
Liu, X., et al.: Privacy and security issues in deep learning: a survey. IEEE Access 9, 4566–4593 (2021). https://doi.org/10.1109/ACCESS.2020.3045078
Loyola-González, O.: Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view. IEEE Access 7, 154096–154113 (2019)
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)
Malek-Podjaski, M., Deligianni, F.: Towards explainable, privacy-preserved human-motion affect recognition. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 01–09 (2021). https://doi.org/10.1109/SSCI50451.2021.9660129
McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Milli, S., Schmidt, L., Dragan, A.D., Hardt, M.: Model reconstruction from model explanations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 1–9. ACM, Atlanta GA USA (2019). https://doi.org/10.1145/3287560.3287562
Miura, T., Hasegawa, S., Shibahara, T.: MEGEX: data-free model extraction attack against gradient-based explainable AI. arXiv preprint arXiv:2107.08909 (2021)
Nori, H., Caruana, R., Bu, Z., Shen, J.H., Kulkarni, J.: Accuracy, interpretability, and differential privacy via explainable boosting. In: Proceedings of the 38th International Conference on Machine Learning, pp. 8227–8237. PMLR (2021)
Oksuz, A.C., Halimi, A., Ayday, E.: Autolycus: exploiting explainable AI (XAI) for model extraction attacks against decision tree models. arXiv preprint arXiv:2302.02162 (2023)
Patel, N., Shokri, R., Zick, Y.: Model explanations with differential privacy. In: 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 1895–1904. ACM, Seoul Republic of Korea (2022). https://doi.org/10.1145/3531146.3533235
Petkovic, D.: It is not “Accuracy vs. Explainability”—we need both for trustworthy AI systems. IEEE Trans. Technol. Soc. 4(1), 46–53 (2023). https://doi.org/10.1109/TTS.2023.3239921
Phong, L., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2018). https://doi.org/10.1109/TIFS.2017.2787987
Raymond, A., Gunes, H., Prorok, A.: Culture-based explainable human-agent deconfliction. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1107–1115. AAMAS 2020, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2020)
Raymond, A., Malencia, M., Paulino-Passos, G., Prorok, A.: Agree to disagree: subjective fairness in privacy-restricted decentralised conflict resolution. Front. Robot. AI 9, 733876 (2022)
Ribeiro, M., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pp. 97–101. Association for Computational Linguistics, San Diego, California (2016). https://doi.org/10.18653/v1/N16-3020
Saeed, W., Omlin, C.: Explainable AI (XAI): a systematic meta-survey of current challenges and future opportunities. Knowl.-Based Syst. 263, 110273 (2023). https://doi.org/10.1016/j.knosys.2023.110273
Saifullah, S., Mercier, D., Lucieri, A., Dengel, A., Ahmed, S.: Privacy meets explainability: a comprehensive impact benchmark. arXiv preprint arXiv:2211.04110 (2022)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Shokri, R., Strobel, M., Zick, Y.: On the privacy risks of model explanations. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 231–241. ACM, Virtual Event USA (2021). https://doi.org/10.1145/3461702.3462533
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: Proceedings of the International Conference on Learning Representations (ICLR). ICLR (2014)
Slack, D., Hilgard, S., Jia, E., Singh, S., Lakkaraju, H.: Fooling LIME and SHAP: adversarial attacks on post hoc explanation methods. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 180–186. ACM, New York NY USA (2020). https://doi.org/10.1145/3375627.3375830
Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)
Song, C., Shmatikov, V.: Overlearning reveals sensitive attributes. In: 8th International Conference on Learning Representations, ICLR 2020 (2020)
Song, Q., Lei, S., Sun, W., Zhang, Y.: Adaptive federated learning for digital twin driven industrial internet of things. In: IEEE Wireless Communications and Networking Conference, WCNC. vol. 2021-March (2021). https://doi.org/10.1109/WCNC49053.2021.9417370
Stadler, T., Oprisanu, B., Troncoso, C.: Synthetic data – anonymisation groundhog day. In: 31st USENIX Security Symposium (USENIX Security 22), pp. 1451–1468 (2022)
Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)
Truong, J.B., Maini, P., Walls, R.J., Papernot, N.: Data-free model extraction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4771–4780 (2021)
Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard J. Law Technol. 31, 841 (2017)
Wahab, O.A., Mourad, A., Otrok, H., Taleb, T.: Federated machine learning: survey, multi-level classification, desirable criteria and future directions in communication and networking systems. IEEE Commun. Surv. Tutorials 23(2), 1342–1397 (2021). https://doi.org/10.1109/COMST.2021.3058573
Wainakh, A., Müßig, T., Grube, T., Mühlhäuser, M.: Label leakage from gradients in distributed machine learning. In: 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), pp. 1–4 (2021). https://doi.org/10.1109/CCNC49032.2021.9369498
Warnecke, A., Arp, D., Wressnegger, C., Rieck, K.: Evaluating explanation methods for deep learning in security. In: 2020 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 158–174 (2020). https://doi.org/10.1109/EuroSP48549.2020.00018
Yan, A., Huang, T., Ke, L., Liu, X., Chen, Q., Dong, C.: Explanation leaks: explanation-guided model extraction attacks. Inf. Sci. 632, 269–284 (2023). https://doi.org/10.1016/j.ins.2023.03.020
Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019). https://doi.org/10.1145/3298981
Yin, H., Mallya, A., Vahdat, A., Alvarez, J.M., Kautz, J., Molchanov, P.: See through gradients: image batch recovery via GradInversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16337–16346 (2021)
Zhang, X., Wang, N., Shen, H., Ji, S., Luo, X., Wang, T.: Interpretable deep learning under fire. In: 29th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 20) (2020)
Zhao, B., Mopuri, K.R., Bilen, H.: iDLG: improved deep leakage from gradients. arXiv preprint arXiv:2001.02610 (2020)
Zhao, X., Zhang, W., Xiao, X., Lim, B.: Exploiting explanations for model inversion attacks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 682–692 (2021)
Zhu, L., Han, S.: Deep leakage from gradients. In: Yang, Q., Fan, L., Yu, H. (eds.) Federated Learning. LNCS (LNAI), vol. 12500, pp. 17–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63076-8_2
Acknowledgments
This work was partially supported by the EU funded project ATLANTIS (Grant Agreement Number 101073909).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Spartalis, C.N., Semertzidis, T., Daras, P. (2024). Balancing XAI with Privacy and Security Considerations. In: Katsikas, S., et al. Computer Security. ESORICS 2023 International Workshops. ESORICS 2023. Lecture Notes in Computer Science, vol 14399. Springer, Cham. https://doi.org/10.1007/978-3-031-54129-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-54129-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54128-5
Online ISBN: 978-3-031-54129-2
eBook Packages: Computer ScienceComputer Science (R0)