Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Edge Server Deployment Approach Based on Uniformity and Centrality

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

In mobile Internet applications that support edge computing, the deployment scheme of edge servers affects the business operation state. Traditional edge servers are deployed on base stations, which do not fully extend the service range of edge servers, resulting in difficult access to edge services. Therefore, this paper proposes the Edge Server Deployment Approach Based on Uniformity and Centrality (ESDA-UC). ESDA-UC considers intersections as candidate deployment locations for edge servers, taking into account traffic density and road network structure. Connection centrality, between centrality, base station centrality, and traffic density are used as the main factors. The intersection centrality of each intersection is calculated as the selection criteria for the deployment location. To avoid concentrating the coverage of edge servers in developed regions of the city, we allocate the number of edge servers according to regional importance. Finally, the improved greedy algorithm is utilized to generate a deployment plan for edge servers. Experiments show that ESDA-UC has higher base station coverage, vehicle coverage, and vehicle coverage time ratios compared to the baseline method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng, Y., Chen, Z., Chen, X., et al.: Task offloading in multi-hop relay-aided multi-access edge computing. IEEE Trans. Veh. Technol. 72(1), 1372–1376 (2022)

    Article  Google Scholar 

  2. Laha, M., Kamble, S., Datta, R.: Edge nodes placement in 5G enabled urban vehicular networks: a centrality-based approach. In: 2020 National Conference on Communications (NCC), Kharagpur, India, pp. 1–6 (2020). https://doi.org/10.1109/NCC48643.2020.9056059

  3. Chen, X., Tang, X., Chen, W., Chai, M.: Roadside unit deployment mechanism for urban vehicular networks. J. Chin. Comput. Syst. 42(3), 601–608 (2021)

    Google Scholar 

  4. Qin, Z., Xu, F., Xie, Y., et al.: An improved top-K algorithm for edge servers deployment in smart city. Trans. Emerg. Telecommun. Technol. 32(8), e4249 (2021)

    Article  Google Scholar 

  5. Ren, Y.Y., Wang, H., Wang, J.X., et al.: The sub-block demarcation with K-Means++ in each province’s interior and establishment analysis of the relative horizontal velocity field model in Mainland China. Chin. J. Geophys. 63(7), 2516–2533 (2020)

    Google Scholar 

  6. Sun, X., Zhang, T., Xu, J., et al.: Energy efficiency-driven mobile base station deployment strategy for shopping malls using modified improved differential evolution algorithm. Appl. Intell. 53, 1–21 (2022)

    Google Scholar 

  7. Dai, L., Zhang, H.: Propagation-model-free base station deployment for mobile net works: integrating machine learning and heuristic methods. IEEE Access 8, 83375–83386 (2020)

    Article  Google Scholar 

  8. Guo, W., Koo, J., Siddiqui, I.F., et al.: QoS-aware energy-efficient MicroBase station deployment for 5G-enabled HetNets. J. King Saud Univ.-Comput. Inf. Sci. 34(10), 10487–10495 (2022)

    Google Scholar 

  9. Ghosh, D., Katehara, H., Rawlley, O., et al.: Artificial intelligence-empowered optimal roadside unit (RSU) deployment mechanism for internet of vehicles (IOV). In: 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 495–500. IEEE (2022)

    Google Scholar 

  10. Cheng, H., Fei, X., Boukerche, A., et al.: GeoCover: an efficient sparse coverage protocol for RSU deployment over urban VANETs. Ad Hoc Netw. 24, 85–102 (2015)

    Article  Google Scholar 

  11. Sengathir, J., Deva Priya, M.: Christy Jeba Malar A, et al. Honey Badger Optimization Algorithm-Based RSU Deployment for Improving Network Coverage in VANETs. In: Sharma, D.K., Peng, S.L., Sharma, R., Jeon, G. (eds.) ICMETE 2022, pp. 179–193. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-9512-5_16

    Chapter  Google Scholar 

  12. Wang, S., Zhao, Y., Xu, J., et al.: Edge server placement in mobile edge computing. J. Parallel Distrib. Comput. 127, 160–168 (2019)

    Article  Google Scholar 

  13. Li, Y., Wang, S.: An energy-aware edge server placement algorithm in mobile edge computing. In: 2018 IEEE International Conference on Edge Computing (EDGE), pp. 66–73. IEEE (2018)

    Google Scholar 

  14. Luo, F., Zheng, S., Ding, W., et al.: An edge server placement method based on reinforcement learning. Entropy 24(3), 317 (2022)

    Article  MathSciNet  Google Scholar 

  15. Zeng, F., Ren, Y., Deng, X., et al.: Cost-effective edge server placement in wireless metropolitan area networks. Sensors 19(1), 32 (2018)

    Article  Google Scholar 

  16. Dubey, B.B., Chauhan, N., Pant, S.: Effect of position of fixed infrastructure on data dissemination in vanets. Int. J. Res. Rev. Comput. Sci. 2(2), 482 (2011)

    Google Scholar 

  17. Landherr, A., Friedl, B., Heidemann, J.: A critical review of centrality measures in social networks. Wirtschaftsinformatik 52, 367–382 (2010)

    Article  Google Scholar 

  18. Kibiłda, J., Galkin, B., DaSilva, L.A.: Modelling multi-operator base station deployment patterns in cellular networks. IEEE Trans. Mob. Comput. 15(12), 3087–3099 (2015)

    Article  Google Scholar 

  19. Kui, X., Du, H., Xiao, X., Li, Y.: Realistic vehicular mobility trace driven RSU deployment scheme. J. Beijing Univ. Posts Telecom 38(1), 114–118 (2015)

    Google Scholar 

  20. Boeing, G.: OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)

    Article  Google Scholar 

  21. Li, Y., Zhou, A., Ma, X., et al.: Profit-aware edge server placement. IEEE Internet Things J. 9(1), 55–67 (2021)

    Article  Google Scholar 

  22. Guo, Y., Wang, S., Zhou, A., et al.: User allocation-aware edge cloud placement in mobile edge computing. Softw. Pract. Exp. 50(5), 489–502 (2020)

    Article  Google Scholar 

  23. Wang, S., Guo, Y., Zhang, N., et al.: Delay-aware microservice coordination in MO bile edge computing: a reinforcement learning approach. IEEE Trans. Mob. Comput. 20(3), 939–951 (2019)

    Article  Google Scholar 

  24. Yang, B., Ma, Y., Ma, Z., et al.: The study on key technology of secure access to the resource pool management. J. Jiangxi Normal Univ. Nat. Sci. Ed. (06), 639–643 (2020). https://doi.org/10.16357/j.cnki.issn1000-5862.2020.06.16

Download references

Acknowledgment

This work was funded by the Jiangxi Normal University Postgraduate Study Abroad Programme Fund. This work was supported by the Jiangxi Provincial Education Department Postgraduate Innovation Fund Project Grant (YC2022-s351).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, X., Ma, Y., Xia, Y., Xie, Q., Jian, W. (2024). Edge Server Deployment Approach Based on Uniformity and Centrality. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 561. Springer, Cham. https://doi.org/10.1007/978-3-031-54521-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54521-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54520-7

  • Online ISBN: 978-3-031-54521-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics