Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Needle in a Haystack: Finding Suitable Idioms Based on Text Descriptions

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2023)

Abstract

Idioms are an important part of natural languages and are often used to enhance expressiveness and fluency of speech. However, it can be difficult to find a contextually appropriate idiom when writing an essay or crafting a headline for a news article, especially for non-native speakers. This gives rise to the idea of an automated system that is able to recommend an idiom for an input sentence. The goal of this study is to develop and compare methods that would make such a system possible. We used an existing collection of idioms and employed several configurations based on models from the Sentence-BERT family. We also automatically expanded the initial dataset and fine-tuned a pre-trained Sentence-BERT model on the idiom/context matching task. This approach achieved the highest MRR score of 0.507. The data and the trained model are publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/archimedes1515/idiom_search.

  2. 2.

    https://open-platform.theguardian.com/documentation/.

  3. 3.

    https://radimrehurek.com/gensim/models/word2vec.html.

  4. 4.

    https://www.sbert.net/docs/pretrained_models.html.

References

  1. Adewumi, T., Vadoodi, R., Tripathy, A., Nikolaido, K., Liwicki, F., Liwicki, M.: Potential idiomatic expression (PIE)-English: corpus for classes of idioms. In: LREC, pp. 689–696 (2022)

    Google Scholar 

  2. Agrawal, R., Kumar, V.C., Muralidharan, V., Sharma, D.M.: No more beating about the bush: a step towards idiom handling for Indian language NLP. In: LREC (2018)

    Google Scholar 

  3. BNC Consortium, et al.: British national corpus. Oxford Text Archive Core Collection (2007)

    Google Scholar 

  4. Dale, R., Viethen, J.: The automated writing assistance landscape in 2021. Nat. Lang. Eng. 27(4), 511–518 (2021)

    Article  Google Scholar 

  5. Dankers, V., Lucas, C., Titov, I.: Can transformer be too compositional? Analysing idiom processing in neural machine translation. In: ACL, pp. 3608–3626 (2022)

    Google Scholar 

  6. Gamage, G., De Silva, D., Adikari, A., Alahakoon, D.: A BERT-based idiom detection model. In: HSI, pp. 1–5 (2022)

    Google Scholar 

  7. Haagsma, H., Bos, J., Nissim, M.: MAGPIE: a large corpus of potentially idiomatic expressions. In: LREC, pp. 279–287 (2020)

    Google Scholar 

  8. Jochim, C., Bonin, F., Bar-Haim, R., Slonim, N.: SLIDE - a sentiment lexicon of common idioms. In: LREC (2018)

    Google Scholar 

  9. Liu, P., Qian, K., Qiu, X., Huang, X.J.: Idiom-aware compositional distributed semantics. In: EMNLP, pp. 1204–1213 (2017)

    Google Scholar 

  10. Liu, Y., Liu, B., Shan, L., Wang, X.: Modelling context with neural networks for recommending idioms in essay writing. Neurocomputing 275, 2287–2293 (2018)

    Article  Google Scholar 

  11. Liu, Y., Pang, B., Liu, B.: Neural-based Chinese idiom recommendation for enhancing elegance in essay writing. In: ACL, pp. 5522–5526 (2019)

    Google Scholar 

  12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  13. Nunberg, G., Sag, I.A., Wasow, T.: Idioms. Language 70(3), 491–538 (1994)

    Article  Google Scholar 

  14. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Workshop on New Challenges for NLP Frameworks, pp. 45–50 (2010)

    Google Scholar 

  15. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. In: EMNLP, pp. 3982–3992 (2019)

    Google Scholar 

  16. Sag, I.A., Baldwin, T., Bond, F., Copestake, A., Flickinger, D.: Multiword expressions: a pain in the neck for NLP. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 1–15. Springer, Berlin (2002). https://doi.org/10.1007/3-540-45715-1_1

    Chapter  Google Scholar 

  17. Saxena, P., Paul, S.: EPIE dataset: a corpus for possible idiomatic expressions. In: Sojka, P., Kopeček, I., Pala, K., Horák, A. (eds.) TSD 2020. LNCS, vol. 12284, pp. 87–94. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58323-1_9

    Chapter  Google Scholar 

  18. Sporleder, C., Li, L.: Unsupervised recognition of literal and non-literal use of idiomatic expressions. In: EACL, pp. 754–762 (2009)

    Google Scholar 

  19. Sporleder, C., Li, L., Gorinski, P., Koch, X.: Idioms in context: the IDIX corpus. In: LREC (2010)

    Google Scholar 

  20. Wible, D., Tsao, N.L.: StringNet as a computational resource for discovering and investigating linguistic constructions. In: Proceedings of the NAACL HLT Workshop on Extracting and Using Constructions in Computational Linguistics, pp. 25–31 (2010)

    Google Scholar 

  21. Williams, L., Bannister, C., Arribas-Ayllon, M., Preece, A., Spasić, I.: The role of idioms in sentiment analysis. Expert Syst. Appl. 42(21), 7375–7385 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The study develops ideas partially derived from Anna Vysheslavova’s 2020 summer internship under Pavel Braslavski’s supervision. We would like to express gratitude to Yulia Badryzlova for fruitful discussion of the paper draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Braslavski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhernokleev, D., Braslavski, P. (2024). Needle in a Haystack: Finding Suitable Idioms Based on Text Descriptions. In: Ignatov, D.I., et al. Analysis of Images, Social Networks and Texts. AIST 2023. Lecture Notes in Computer Science, vol 14486. Springer, Cham. https://doi.org/10.1007/978-3-031-54534-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54534-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54533-7

  • Online ISBN: 978-3-031-54534-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics