Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Metamorphic Testing for Recommender Systems

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14486))

  • 264 Accesses

Abstract

Recommender systems are commonly based on a multi-armed bandit model. This model should be carefully tested because it affects the users, but it is technically complicated because of the test oracle problem and the stochastical nature of multi-armed bandit algorithms. Metamorphic testing is a testing method for problems without test oracles. In this paper, we propose a novel approach that applies metamorphic testing to the verification of the requirements for stochastic models. We propose a stochastic metamorphic relation (SMR) which is a composition of a sampling procedure and a determination function. We propose several relations for multi-armed bandit models and algorithms. Then, we implement those relations and test algorithms. Our experiment demonstrates that the proposed method can identify errors and that stochasticity of relations is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32, 48–77 (2002)

    Article  MathSciNet  Google Scholar 

  2. Barr, E., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software testing: a survey. IEEE Trans. Software Eng. 41(5), 507–525 (2015). https://doi.org/10.1109/TSE.2014.2372785

    Article  Google Scholar 

  3. Cavenaghi, E., Sottocornola, G., Stella, F., Zanker, M.: Non stationary multi-armed bandit: empirical evaluation of a new concept drift-aware algorithm. Entropy 23(3), 380 (2021)

    Article  MathSciNet  Google Scholar 

  4. Chen, T.Y., et al.: Metamorphic testing: a review of challenges and opportunities. ACM Comput. Surv. (CSUR) 51(1), 1–27 (2018). https://doi.org/10.1145/3143561

    Article  Google Scholar 

  5. Fischer, G.: User modeling in human-computer interaction. User Model. User-Adap. Inter. 11, 65–86 (2001)

    Article  Google Scholar 

  6. Iakusheva, S., Khritankov, A.: Composite metamorphic relations for integration testing. In: 2022 8th International Conference on Computer Technology Applications, May 12–14, Vienna, Austria (2022). https://doi.org/10.1145/3543712.3543725

  7. Khritankov, A., Pershin, N., Ukhov, N., Ukhov., A.: MLDev: data science experiment automation and reproducibility software. In: Pozanenko, A., Stupnikov, S., Thalheim, B., Mendez, E., Kiselyova, N. (eds.) Data Analytics and Management in Data Intensive Domains. Communications in Computer and Information Science, vol. 1620, pp. 3–18. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-12285-9_1

  8. Khritankov, A., Pilkevich, A.: Existence conditions for hidden feedback loops in online recommender systems. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds.) Web Information Systems Engineering - WISE 2021. Lecture Notes in Computer Science(), vol. 13081, pp. 267–274. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91560-5_19

    Chapter  Google Scholar 

  9. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the web: survey and practical guide. Data Min. Knowl. Disc. 18, 140–181 (2009)

    Article  MathSciNet  Google Scholar 

  10. Mao, C., Yi, X., Chen, T. Y.: Metamorphic robustness testing for recommender systems: a case study. In: 2020 7th International Conference on Dependable Systems and Their Applications (DSA), pp. 331–336. IEEE (2020)

    Google Scholar 

  11. Matković, P., Tumbas, P.: A comparative overview of the evolution of software development models. Int. J. Ind. Eng. Manag. 1(4), 163 (2010)

    Article  Google Scholar 

  12. Pesu, D., Zhou, Z. Q., Zhen, J., Towey, D.: A monte Carlo method for metamorphic testing of machine translation services. In: Proceedings of the 3rd International Workshop on Metamorphic Testing, pp. 38–45 (2018)

    Google Scholar 

  13. ur Rehman, F., Izurieta, C.: Statistical metamorphic testing of neural network based intrusion detection systems. In: 2021 IEEE International Conference on Cyber Security and Resilience (CSR), pp. 20–26. IEEE(2021)

    Google Scholar 

  14. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook, 1st edn. Springer-Verlag, Berlin (2010)

    Google Scholar 

  15. Russo, D.J., Roy, B.V., Kazerouni, A., Osband, I., Wen, Z.: A Tutorial on Thompson Sampling. Found. Trends R Mach. Learn. 11(1), 1–96 (2018)

    Article  Google Scholar 

  16. Slivkins, A.: Introduction to multi-armed bandits. Found. Trends Mach. Learn. 12(1–2), 1–286 (2019). https://doi.org/10.1561/2200000068

    Article  Google Scholar 

  17. Wang, J.C., Meyer, M.C.: Testing the monotonicity or convexity of a function using regression splines. Can. J. Stat. 39(1), 89–107 (2011)

    Article  MathSciNet  Google Scholar 

  18. Zhou, Z.Q., Tse, T.H., Witheridge, M.: Metamorphic robustness testing: exposing hidden defects in citation statistics and journal impact factors. IEEE Trans. Softw. Eng. 47(6), 1164–1183 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Iakusheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iakusheva, S., Khritankov, A. (2024). Metamorphic Testing for Recommender Systems. In: Ignatov, D.I., et al. Analysis of Images, Social Networks and Texts. AIST 2023. Lecture Notes in Computer Science, vol 14486. Springer, Cham. https://doi.org/10.1007/978-3-031-54534-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54534-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54533-7

  • Online ISBN: 978-3-031-54534-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics