Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Onset and Today’s Perspectives of Multilevel Syllogistic

  • Chapter
  • First Online:
From Computational Logic to Computational Biology

Abstract

We report on the initial phases of a systematic study (undertaken over forty years ago) on decidable fragments of Set Theory, to which Alfredo Ferro contributed and which later branched out in many directions. The impact that research has had so far and will continue to have, mainly in the areas of proof-checking, program-correctness verification, declarative programming—and, more recently, reasoning within description logics—is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This happening left a very profound impression on Alfredo, who afterward developed a strong religious involvement.

  2. 2.

    The case \(\textsf{at}(x) = \emptyset \) has been introduced here just to make the map \(\textsf{at}\) total on V.

  3. 3.

    The problem of producing a concrete model for any satisfiable formula (being also able to flag when none exists) is sometimes called satisfaction problem: hence, for MLS, this problem is algorithmically solvable.

  4. 4.

    Set-terms of the form \(\left\{ {s_0,\dots ,s_N}\right\} \), which can be seen as abbreviating \(\left\{ {s_0}\right\} \cup \cdots \cup \left\{ {s_N}\right\} \), enter into play for free with singleton.

  5. 5.

    See also [85, 87] and cf. footnote 14 below. Early decidability-related results concerning arb relied on the assumption that a strict well-ordering \(\lhd \) of the universe of all sets, complying with various conditions, is available and that \({\textsf {arb}}\!\left( {s}\right) \) chooses the \(\lhd \)-least element of s from each non-empty set s. One of the conditions imposed on \(\lhd \) entails that \(x\lhd y\) holds when \(x\in y\); in addition, \(\lhd \) must be anti-lexicographic over finite sets, which means: \(\left\{ {x_{m+p},\dots ,x_{m},\dots ,x_{1}}\right\} \lhd \big (\left\{ {y_{q+1},\dots ,y_{1}}\right\} \cup \left\{ {x_{m},\dots ,x_{1}}\right\} \big )\) follows from \( x_{m+p}\lhd \cdots \lhd x_m\lhd \cdots \lhd x_1\ \,{\small \& }\,\ y_{q+1}\lhd \cdots \lhd y_{1}\lhd x_m\ \,{\small \& }\,\ \big (p=0\ \,\vee \,\ (p>0\ \,{\small \& }\,\ x_{m+1}\lhd y_{1})\big )\).

  6. 6.

    I had been introduced to Alfredo by the late Filippo Chiarenza, one of his very close friends and fellow students, at a beach in the Catania shoreline, a couple of years before in the summer of 1979, when Alfredo was temporarily back to Catania to get married to his beloved wife Pina Carrà.

  7. 7.

    “Decidability issues in set theory”.

  8. 8.

    Places have been defined in Sect. 1.3.

  9. 9.

    Actually, power-set clauses impose stronger constraints than union clauses do, insofar as the implication

    figure t

    is true for all sets x and y , while the converse implication does not hold in general.

  10. 10.

    Correct modeling of also the literals of the forms \(x = y \cup z\), \(x = y \cap z\), and \(x = y \setminus z\) was ensured since the sets \(\overline{\alpha }\), with \(\alpha \in \varPi \), were maintained mutually disjoint during the stabilization phase too.

  11. 11.

    Compared with the very weak aggregate theory \(\mathsf {Z_1}\) treated by Robert L. Vaught, which is generated by the empty set axiom and the adjunction axiom alone (cf. [143, p. 21]), the systems studied by Parlamento and Policriti ensure a more transparent syntax arithmetization and a tighter connection with computability theory.

  12. 12.

    The term hyperset was first proposed in [3] to mean—in a universe modeling Aczel’s AFA—a ‘set’ \(x_0\) whose transitive closure is potentially ill-formed, in the sense that membership may form an infinite descending chain \(x_0\ni x_1\ni x_2\ni \cdots \) .

  13. 13.

    One often dubs as ‘free’ or ‘uninterpreted’ those symbols that are not subdued to any axiomatic constraint; this is not the case of \(\textsf {with}\), which must comply with the laws \(x\ \textsf {with}\ y\ \textsf {with}\ z=x\ \textsf {with}\ z\ \textsf {with}\ y\) and \(x\ \textsf {with}\ y\ \textsf {with}\ y=x\ \textsf {with}\ y\) .

  14. 14.

    In this respect, the treatment of the global choice operator is simpler-minded—but also considerably more efficient—than the one proposed in [85, 87, 104].

  15. 15.

    We mean here the problem of determining whether or not a sentence of the said form \(\exists \,x_1\cdots \exists \,x_N\,\forall \,y\,\mu \) (with \(N\geqslant 0\)) is satisfiable in the standard universe of sets. We will be more explicit on the notation \(\exists ^*\forall \) in footnote (see footnote 16).

  16. 16.

    To stay aligned with the literature cited in this section, we slightly depart from the notation used above to classify prenex formulae according to their quantificational prefix. Here and below, \(\exists ^*\) and \(\forall ^*\) denote batches (possibly empty) of alike quantifiers, while \(\exists \exists \) and \(\forall \forall \) denote two consecutive quantifiers of existential, respectively universal, type.

References

  1. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Pub. Co., Amsterdam (1954)

    Google Scholar 

  2. Aczel, P.: Non-Well-Founded Sets, vol. 14. CSLI Lecture Notes, Stanford (1988)

    Google Scholar 

  3. Barwise, J., Moss, L.: Hypersets. Math. Intell. 13(4), 31–41 (1991)

    Article  MathSciNet  Google Scholar 

  4. Behmann, H.: Beiträge zur Algebra der Logik insbesondere zum Entscheidungsproblem. Math. Ann. 86, 163–220 (1922)

    Article  MathSciNet  Google Scholar 

  5. Bellè, D., Parlamento, F.: Truth in V for \(\exists ^\ast \forall \forall \)-sentences is decidable. J. Symb. Logic 71(4), 1200–1222 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bellè, D., Parlamento, F.: Decidability of \(\exists ^\ast \forall \forall \)-sentences in HF. Notre Dame J. Formal Logic 49(1), 55–64 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bergenti, F., Monica, S., Rossi, G.: Constraint logic programming with polynomial constraints over finite domains. Fundam. Informaticae 161(1–2), 9–27 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bledsoe, W.W.: Non-resolution theorem proving. Artif. Intell. 9(1), 1–35 (1977)

    Article  MathSciNet  Google Scholar 

  9. Börger, E., Grädel, E., Gurevich, Yu.: The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, Heidelberg (1997)

    Book  Google Scholar 

  10. Breban, M.: Decision algorithms for a class of set-theoretic formulae involving one occurrence of union-set operator. Ph.D. thesis, NYU/GSAS (1982)

    Google Scholar 

  11. Breban, M., Ferro, A.: Decision procedures for elementary sublanguages of set theory. III. Restricted classes of formulas involving the power set operator and the general set union operator. Adv. in Appl. Math. 5(2), 147–215 (1984)

    Article  MathSciNet  Google Scholar 

  12. Breban, M., Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. II. Formulas involving restricted quantifiers, together with ordinal, integer, map, and domain notions. Comm. Pure Appl. Math. 34, 177–195 (1981)

    Article  MathSciNet  Google Scholar 

  13. Buriola, G., Cantone, D., Cincotti, G., Omodeo, E.G., Spartà, G.T.: A decidable theory involving addition of differentiable real functions. Theor. Comput. Sci. 940(Part A), 124–148 (2023)

    Article  MathSciNet  Google Scholar 

  14. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive description logics: an automata-theoretic approach. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, Vancouver, British Columbia, Canada, 22–26 July 2007, pp. 391–396. AAAI Press (2007)

    Google Scholar 

  15. Cantone, D.: A decision procedure for a class of unquantified formulae of set theory involving the powerset and singleton operators. Ph.D. thesis, NYU/GSAS (1987)

    Google Scholar 

  16. Cantone, D.: A survey of computable set theory. Le Matematiche XLII I(1), 125–194 (1988)

    MathSciNet  Google Scholar 

  17. Cantone, D.: Decision procedures for elementary sublanguages of set theory. X. Multilevel syllogistic extended by the singleton and powerset operators. J. Autom. Reason. 7(2), 193–230 (1991)

    MathSciNet  Google Scholar 

  18. Cantone, D.: A fast saturation strategy for set-theoretic tableaux. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 122–137. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0027409

    Chapter  Google Scholar 

  19. Cantone, D.: Decision procedures for elementary sublanguages of set theory. XVII. Commonly occurring extensions of multi-level syllogistic. In: Davis, M., Schonberg, E. (eds.) From Linear Operators to Computational Biology, pp. 47–85. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4282-9_5

    Chapter  Google Scholar 

  20. Cantone, D., Cutello, V.: A decidable fragment of the elementary theory of relations and some applications. In: Watanabe, S., Nagata, M. (eds.) Proceedings of the 1990 International Symposium on Symbolic and Algebraic Computation, ISSAC 1990, Tokyo, Japan, 20–24 August 1990, pp. 24–29. ACM Press, New York (1990)

    Google Scholar 

  21. Cantone, D., Cutello, V.: On the decidability problem for a topological syllogistic involving the notion of topological product. Technical Report TR-91-029, International Computer Science Institute, Berkeley, CA, May 1991

    Google Scholar 

  22. Cantone, D., Cutello, V.: Decision algorithms for elementary topology. I. Topological syllogistic with set and map constructs, connectedness and cardinality comparison. Comm. Pure Appl. Math. 47(9), 1197–1217 (1994)

    Article  MathSciNet  Google Scholar 

  23. Cantone, D., Cutello, V., Policriti, A.: Set-theoretic reductions of Hilbert’s tenth problem. In: Börger, E., Büning, H.K., Richter, M.M. (eds.) CSL 1989. LNCS, vol. 440, pp. 65–75. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52753-2_32

    Chapter  Google Scholar 

  24. Cantone, D., Cutello, V., Schwartz, J.T.: Decision problems for tarski and presburger arithmetics extended with sets. In: Börger, E., Kleine Büning, H., Richter, M.M., Schönfeld, W. (eds.) CSL 1990. LNCS, vol. 533, pp. 95–109. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54487-9_54

    Chapter  Google Scholar 

  25. Cantone, D., De Domenico, A., Maugeri, P., Omodeo, E.G.: Complexity assessments for decidable fragments of set theory. IV: A quadratic reduction of constraints over nested sets to Boolean formulae (2021). https://arxiv.org/abs/2112.04797

  26. Cantone, D., De Domenico, A., Maugeri, P., Omodeo, E.G.: Complexity assessments for decidable fragments of set theory. I: a taxonomy for the Boolean case. Fundam. Informaticae 181(1), 37–69 (2021)

    Article  MathSciNet  Google Scholar 

  27. Cantone, D., Ferro, A.: Techniques of computable set theory with applications to proof verification. Comm. Pure Appl. Math. 48(9), 901–945 (1995)

    Article  MathSciNet  Google Scholar 

  28. Cantone, D., Ferro, A., Micale, B., Sorace, G.: Decision procedures for elementary sublanguages of set theory. IV. Formulae involving a rank operator or one occurrence of \(\varSigma (x)=\{\{y\}|y\in x\}\). Comm. Pure Appl. Math. 40(1), 37–77 (1987)

    Article  MathSciNet  Google Scholar 

  29. Cantone, D., Ferro, A., Omodeo, E.G.: Decision procedures for elementary sublanguages of set theory VIII: A semidecision procedure for finite satisfiability of unquantified set-theoretic formulae. Comm. Pure Appl. Math. 41(1), 105–120 (1988)

    Article  MathSciNet  Google Scholar 

  30. Cantone, D., Ferro, A., Omodeo, E.G.: Computable set theory, volume no.6 Oxford Science Publications of International Series of Monographs on Computer Science. Clarendon Press (1989). Foreword by Jacob T. Schwartz

    Google Scholar 

  31. Cantone, D., Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision algorithms for some fragments of analysis and related areas. Comm. Pure Appl. Math. 40(3), 281–300 (1987)

    Article  MathSciNet  Google Scholar 

  32. Cantone, D., Ferro, A., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. VI. Multilevel syllogistic extended by the powerset operator. Comm. Pure Appl. Math. 38(5), 549–571 (1985)

    Article  MathSciNet  Google Scholar 

  33. Cantone, D., Ferro, A., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. V. Multilevel syllogistic extended by the general union operator. J. Comput. Syst. Sci. 34(1), 1–18 (1987)

    Article  MathSciNet  Google Scholar 

  34. Cantone, D., Ghelfo, S., Omodeo, E.G.: The automation of syllogistic. I: Syllogistic normal forms. J. Symb. Comput. 6(1), 83–98 (1988)

    Article  MathSciNet  Google Scholar 

  35. Cantone, D., Longo, C.: A decidable quantified fragment of set theory with ordered pairs and some undecidable extensions. In: Faella, M., Murano, A. (eds.) Proceedings Third International Symposium on Games, Automata, Logics and Formal Verification, Napoli, Italy, 6–8th June 2012, volume 96 of Electronic Proceedings in Theoretical Computer Science, pp. 224–237. Open Publishing Association (2012). http://rvg.web.cse.unsw.edu.au/eptcs/Published/GandALF2012/Papers/628/arXiv.pdf

  36. Cantone, D., Longo, C.: A decidable two-sorted quantified fragment of set theory with ordered pairs and some undecidable extensions. Theoret. Comput. Sci. 560, 307–325 (2014)

    Article  MathSciNet  Google Scholar 

  37. Cantone, D., Longo, C., Nicolosi-Asmundo, M.: A decision procedure for a two-sorted extension of multi-level syllogistic with the Cartesian product and some map constructs. In: Faber, W., Leone, N. (eds.) Proceedings of the 25th Italian Conference on Computational Logic (CILC 2010), Rende, Italy, 7–9 July 2010, vol. 598, pp. 1–18. CEUR Workshop Proc., June 2010. ISSN 1613-0073

    Google Scholar 

  38. Cantone, D., Longo, C., Nicolosi-Asmundo, M.: A decidable quantified fragment of set theory involving ordered pairs with applications to description logics. In: Bezem, M. (ed.) Computer Science Logic (CSL 2011) - 25th International Workshop/20th Annual Conference of the EACSL. Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 12, pp. 129–143. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  39. Cantone, D., Longo, C., Nicolosi-Asmundo, M., Santamaria, D.F.: Web ontology representation and reasoning via fragments of set theory. In: ten Cate, B., Mileo, A. (eds.) RR 2015. LNCS, vol. 9209, pp. 61–76. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22002-4_6

    Chapter  Google Scholar 

  40. Cantone, D., Longo, C., Pisasale, A.: Comparing description logics with multi-level syllogistics: the description logic \(\cal{DL}\langle {\sf MLSS}_{2,m}^{\times }\rangle \). In: Traverso, P. (ed.) 6th Workshop on Semantic Web Applications and Perspectives (Bressanone, Italy, 21–22 September 2010), pp. 1–13 (2010)

    Google Scholar 

  41. Cantone, D., Maugeri, P., Omodeo, E.G.: Complexity assessments for decidable fragments of set theory. II: a taxonomy for ‘small’ languages involving membership. Theor. Comput. Sci. 848, 28–46 (2020)

    Article  MathSciNet  Google Scholar 

  42. Cantone, D., Nicolosi-Asmundo, M.: On the satisfiability problem for a 4-level quantified syllogistic and some applications to modal logic. Fundam. Informaticae 124(4), 427–448 (2013)

    Article  MathSciNet  Google Scholar 

  43. Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: Conjunctive query answering via a fragment of set theory. In: Proceedings of ICTCS 2016, Lecce, 7–9 September. CEUR Workshop Proc., vol. 1720, pp. 23–35 (2016). ISSN 1613-0073

    Google Scholar 

  44. Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: A set-theoretic approach to ABox reasoning services. In: Costantini, S., Franconi, E., Van Woensel, W., Kontchakov, R., Sadri, F., Roman, D. (eds.) RuleML+RR 2017. LNCS, vol. 10364, pp. 87–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61252-2_7

    Chapter  Google Scholar 

  45. Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: A C++ reasoner for the description logic \(\cal{DL}_{\textbf{D}}^{4,\!\times }\). In: Proceedings of CILC 2017, Naples, Italy, 26–29 September 2017. CEUR Workshop Proc., vol. 1949, pp. 276–280 (2017). ISSN 1613-0073

    Google Scholar 

  46. Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: An optimized KE-tableau-based system for reasoning in the description logic \({\cal{DL}}_{{\textbf{D}}}^{4,\!\times }\). In: Benzmüller, C., Ricca, F., Parent, X., Roman, D. (eds.) RuleML+RR 2018. LNCS, vol. 11092, pp. 239–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99906-7_16

    Chapter  Google Scholar 

  47. Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: A set-theoretic approach to reasoning services for the description logic \(\cal{DL}_{\textbf{D}}^{4,\!\times }\). Fundam. Informaticae 176, 349–384 (2020)

    Article  Google Scholar 

  48. Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: An improved set-based reasoner for the description logic \(\cal{DL}_{\textbf{D}}^{4,\!\times }\). Fundam. Informaticae 178(4), 315–346 (2021)

    Article  Google Scholar 

  49. Cantone, D., Omodeo, E.G.: On the decidability of formulae involving continuous and closed functions. In: Sridharan, N.S. (ed.) Proceedings of the 11th International Joint Conference on Artificial Intelligence, Detroit, MI, USA, August 1989, vol. 1, pp. 425–430. Morgan Kaufmann (1989)

    Google Scholar 

  50. Cantone, D., Omodeo, E.G.: Topological syllogistic with continuous and closed functions. Comm. Pure Appl. Math. 42(8), 1175–1188 (1989)

    Article  MathSciNet  Google Scholar 

  51. Cantone, D., Omodeo, E.G., Panettiere, M.: From Hilbert’s 10th problem to slim, undecidable fragments of set theory. In: Cordasco, G., Gargano, L., Rescigno, A.A. (eds.) Proceedings of the 21st Italian Conference on Theoretical Computer Science, Ischia, Italy, 14–16 September 2020, volume 2756 of CEUR Workshop Proc., pp. 47–60. CEUR-WS.org (2020)

    Google Scholar 

  52. Cantone, D., Omodeo, E.G., Panettiere, M.: Very weak, essentially undecidable set theories. In: Monica, S., Bergenti, F. (eds.) Proceedings of the 36th Italian Conference on Computational Logic, Parma, Italy, 7–9 September 2021, volume 3002 of CEUR Workshop Proc., pp. 31–46. CEUR-WS.org (2021)

    Google Scholar 

  53. Cantone, D., Omodeo, E.G., Policriti, A.: The automation of syllogistic. II: optimization and complexity issues. J. Autom. Reason. 6(2), 173–187 (1990)

    Article  MathSciNet  Google Scholar 

  54. Cantone, D., Omodeo, E.G., Policriti, A.: Set Theory for Computing. From Decision Procedures to Declarative Programming with Sets. Texts and Monographs in Computer Science. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-3452-2

  55. Cantone, D., Omodeo, E.G., Policriti, A.: Banishing ultrafilters from our consciousness. In: Omodeo, E.G., Policriti, A. (eds.) Martin Davis on Computability, Computational Logic, and Mathematical Foundations. OCL, vol. 10, pp. 255–283. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41842-1_10

    Chapter  Google Scholar 

  56. Cantone, D., Omodeo, E.G., Schwartz, J.T., Ursino, P.: Notes from the logbook of a proof-checker’s project*. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 182–207. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39910-0_8

    Chapter  Google Scholar 

  57. Cantone, D., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. XI. Multilevel syllogistic extended by some elementary map constructs. J. Autom. Reason. 7(2), 231–256 (1991)

    MathSciNet  Google Scholar 

  58. Cantone, D., Ursino, P.: Formative processes with applications to the decision problem in set theory: II. Powerset and singleton operators, finiteness predicate. Inf. Comput. 237, 215–242 (2014)

    Article  MathSciNet  Google Scholar 

  59. Cantone, D., Ursino, P.: An Introduction to the Technique of Formative Processes in Set Theory. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74778-1

    Book  Google Scholar 

  60. Cantone, D., Ursino, P.: Decidability of the satisfiability problem for Boolean set theory with the unordered Cartesian product operator. ACM Trans. Comput. Log. 25(1), 1–30 (2024). Article 5

    Google Scholar 

  61. Cantone, D., Ursino, P., Omodeo, E.G.: Formative processes with applications to the decision problem in set theory: I. Powerset and singleton operators. Inf. Comput. 172(2), 165–201 (2002)

    Article  MathSciNet  Google Scholar 

  62. Cantone, D., Zarba, C.G.: A new fast tableau-based decision procedure for an unquantified fragment of set theory. In: Caferra, R., Salzer, G. (eds.) Automated Deduction in Classical and Non-Classical Logics, Selected Papers. LCNS, vol. 1761, pp. 126–136. Springer, Heidelberg (2000)

    Google Scholar 

  63. Cantone, D., Zarba, C.G.: A tableau-based decision procedure for a fragment of graph theory involving reachability and acyclicity. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 93–107. Springer, Heidelberg (2005). https://doi.org/10.1007/11554554_9

    Chapter  Google Scholar 

  64. Cantone, D., Zarba, C.G.: A decision procedure for monotone functions over bounded and complete lattices. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments II. LNCS (LNAI), vol. 4342, pp. 318–333. Springer, Heidelberg (2006). https://doi.org/10.1007/11964810_15

    Chapter  Google Scholar 

  65. Casagrande, A., Di Cosmo, F., Omodeo, E.G.: On perfect matchings for some bipartite graphs. In: Cristiá et al. [70], pp. 38–51

    Google Scholar 

  66. Casagrande, A., Omodeo, E.G.: Reasoning about connectivity without paths. In: Bistarelli, S., Formisano, A. (eds.) Proceedings of the 15th Italian Conference on Theoretical Computer Science, Perugia, Italy, 17–19 September 2014, volume 1231 of CEUR Workshop Proc., pp. 93–108. CEUR-WS.org (2014)

    Google Scholar 

  67. Ceterchi, R., Omodeo, E.G., Tomescu, A.I.: The representation of Boolean algebras in the spotlight of a proof checker. In: Giordano, L., Gliozzi, V., Pozzato, G.L. (eds.) Proceedings 29th Italian Conference on Computational Logic, Torino, Italy, 16–18 June 2014, volume 1195 of CEUR Workshop Proc., pp. 287–301. CEUR-WS.org (2014)

    Google Scholar 

  68. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. LNCS, vol. 33, pp. 134–183. Springer, Vienna (1975). https://doi.org/10.1007/978-3-7091-9459-1_4

    Chapter  Google Scholar 

  69. Cristiá, M., Delahaye, D., Dubois, C. (eds.) Proceedings of the 3rd International Workshop on Sets and Tools co-located with the 6th International ABZ Conference, SETS@ABZ 2018, Southamptom, UK, 5 June 2018, volume 2199 of CEUR Workshop Proc. CEUR-WS.org (2018)

    Google Scholar 

  70. Cristiá, M., Rossi, G., Frydman, C.: log as a test case generator for the test template framework. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 229–243. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40561-7_16

    Chapter  Google Scholar 

  71. Davis, M., Schonberg, E. (eds.): From Linear Operators to Computational Biology: Essays in Memory of Jacob T Schwartz. Springer, London (2013)

    Google Scholar 

  72. Davis, M., Schwartz, J.T.: Correct-program technology / Extensibility of verifiers - Two papers on Program Verification with Appendix of Edith Deak. Technical Report No. NSO-12, Courant Institute of Mathematical Sciences, New York University, September 1977

    Google Scholar 

  73. Davis, M., Schwartz, J.T.: Metamathematical extensibility for theorem verifiers and proof-checkers. Comput. Math. Appl. 5(3), 217–230 (1979)

    Article  MathSciNet  Google Scholar 

  74. Dewar, R.: SETL and the evolution of programming. In: Davis and Schonberg [72], pp. 39–46

    Google Scholar 

  75. Doberkat, E.-E., Fox, D.: Software Prototyping MIT SETL. Teubner, Stuttgart (1989). https://link.springer.com/book/10.1007/978-3-322-94710-9

  76. Dovier, A., Formisano, A., Omodeo, E.G.: Decidability results for sets with atoms. ACM Trans. Comput. Log. 7(2), 269–301 (2006)

    Article  MathSciNet  Google Scholar 

  77. Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: \(\{\)log\(\}\): a logic programming language with finite sets. In: Furukawa, K. (ed.) Logic Programming, Proceedings of the Eighth International Conference, Paris, France, 24–28 June 1991, pp. 111–124. MIT Press (1991)

    Google Scholar 

  78. Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: \(\{\)log\(\}\): a language for programming in logic with finite sets. J. Log. Program. 28(1), 1–44 (1996)

    Article  MathSciNet  Google Scholar 

  79. Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for lists, multisets, compact lists, and sets. ACM Trans. Comput. Log. 9(3), 15:1-15:30 (2008)

    Article  MathSciNet  Google Scholar 

  80. Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theory Pract. Log Program 6(6), 645–701 (2006)

    Article  MathSciNet  Google Scholar 

  81. Dreben, B., Goldfarb, W.D.: The Decision Problem. Solvable Classes of Quantificational Formulas. Advanced Book Program. Addison-Wesley Publishing Company, Reading (1979)

    Google Scholar 

  82. Farmer, W.M., Guttman, J.D., Thayer, F.J.: IMPS: an interactive mathematical proof system. J. Autom. Reason. 11, 213–248 (1993)

    Article  Google Scholar 

  83. Ferro, A.: Decision procedures for some classes of unquantified set theoretic formulae. Ph.D. thesis, NYU / GSAS (1981)

    Google Scholar 

  84. Ferro, A.: A note on the decidability of MLS extended with the powerset operator. Commun. Pure Appl. Math. 38(4), 367–374 (1985)

    Article  MathSciNet  Google Scholar 

  85. Ferro, A.: Decision procedures for elementary sublanguages of set theory: XII. Multilevel syllogistic extended with singleton and choice operators. J. Autom. Reason. 7(2), 257–270 (1991)

    Article  MathSciNet  Google Scholar 

  86. Ferro, A., Omodeo, E.G.: An efficient validity test for formulae in extensional two-level syllogistic. Le Matematiche XXXIII, 130–137 (1978). In reality, this paper appeared in print in 1979 or 1980

    Google Scholar 

  87. Ferro, A., Omodeo, E.G.: Decision procedures for elementary sublanguages of set theory. VII. Validity in set theory when a choice operator is present. Comm. Pure Appl. Math. 40(3), 265–280 (1987)

    Article  MathSciNet  Google Scholar 

  88. Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. I. Multi-level syllogistic and some extensions. Comm. Pure Appl. Math. 33(5), 599–608 (1980)

    Article  MathSciNet  Google Scholar 

  89. Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision procedures for some fragments of set theory. In: Bibel, W., Kowalski, R. (eds.) CADE 1980. LNCS, vol. 87, pp. 88–96. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10009-1_8

    Chapter  Google Scholar 

  90. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    Google Scholar 

  91. Giordano, L., Policriti, A.: Adding the power-set to description logics. Theor. Comput. Sci. 813, 155–174 (2020)

    Article  MathSciNet  Google Scholar 

  92. Gogol, D.: The \(\forall _{{{n}}}\exists \)-completeness of Zermelo-Fraenkel set theory. Zeitschr. f. math. Logik und Grundlagen d. Math. 24(19–24):289–290 (1978)

    Google Scholar 

  93. Goguen, J.A., Malcolm, G.: Algebraic Semantics of Imperative Programs. MIT Press, Cambridge (1996)

    Book  Google Scholar 

  94. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Princ. of Knowledge Representation and Reasoning, pp. 57–67. AAAI Press (2006)

    Google Scholar 

  95. Jech, T.: Set Theory. Springer Monographs in Mathematics, Third Millennium edition. Springer, Heidelberg (2003)

    Google Scholar 

  96. Keller, J.-P., Paige, R.: Program derivation with verified transformations - a case study. Comm. Pure Appl. Math. 48(9), 1053–1113 (1995). Special issue https://onlinelibrary.wiley.com/toc/10970312/1995/48/9, in honor of J. T. Schwartz

  97. Lévy, A.: A Hierarchy of Formulas in Set Theory. A Hierarchy of Formulas in Set Theory. American Mathematical Society (1965)

    Google Scholar 

  98. Lewis, H.R.: Unsolvable Classes of Quantificational Formulas. Advanced Book Program. Addison-Wesley Publishing Company, Reading (1979)

    Google Scholar 

  99. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980)

    Article  MathSciNet  Google Scholar 

  100. Lücke, J.: Hilberticus - a tool deciding an elementary sublanguage of set theory. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 690–695. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45744-5_57

    Chapter  Google Scholar 

  101. Mancosu, P.: Between Russell and Hilbert: Behmann on the foundations of mathematics. Bull. Symbolic Logic 5(3), 303–330 (1999)

    Article  MathSciNet  Google Scholar 

  102. Manin,Yu.I.: A Course in Mathematical Logic. Graduate Texts in Mathematics. Springer, New York (1977). https://doi.org/10.1007/978-1-4757-4385-2

  103. Matiyasevich, Yu.V., Desyataya Problema Gilberta. Fizmatlit, Moscow (1993). English translation: Hilbert’s Tenth Problem. The MIT Press, Cambridge (1993). French translation: Le dixième Problème de Hilbert: son indécidabilité, Masson, Paris Milan Barcelone (1995). http://logic.pdmi.ras.ru/~yumat/H10Pbook/

  104. Omodeo, E.G.: Decidability and proof procedures for set theory with a choice operator. Ph.D. thesis, NYU/GSAS (1984)

    Google Scholar 

  105. Omodeo, E.G.: L’automazione della sillogistica. Le Scienze (Italian edition of Scientific American) 218, 120–128, 143 (1986)

    Google Scholar 

  106. Omodeo, E.G.: The Ref proof-checker and its “common shared scenario”. In: Davis and Schonberg [72], pp. 121–131

    Google Scholar 

  107. Omodeo, E.G., Parlamento, F., Policriti, A.: A derived algorithm for evaluating \(\varepsilon \)-expressions over abstract sets. J. Symb. Comput. 15(5–6), 673–704 (1993). Special issue on Automatic Programming; A.W. Biermann and W. Bibel editors

    Google Scholar 

  108. Omodeo, E.G., Parlamento, F., Policriti, A.: Decidability of \(\exists ^{\ast }\forall \)-sentences in membership theories. Math. Log. Quart. 42(1), 41–58 (1996)

    Article  MathSciNet  Google Scholar 

  109. Omodeo, E.G., Policriti, A.: Solvable set/hyperset contexts: I. Some decision procedures for the pure, finite case. Comm. Pure Appl. Math. 48(9), 1123–1155 (1995). Special issue in honor of Jacob T. Schwartz

    Google Scholar 

  110. Omodeo, E.G., Policriti, A.: The Bernays-Schönfinkel-Ramsey class for set theory: semidecidability. J. Symb. Logic 75(2), 459–480 (2010)

    Article  Google Scholar 

  111. Omodeo, E.G., Policriti, A.: The Bernays-Schönfinkel-Ramsey class for set theory: decidability. J. Symb. Logic 77(3), 896–918 (2012)

    Article  Google Scholar 

  112. Omodeo, E.G., Policriti, A., Tomescu, A.I.: Statements of ill-founded infinity in Set Theory. In: Cegielski, P. (ed.) Studies in Weak Arithmetics. CLSI Lecture Notes, vol. 196, pp. 173–199. CLSI, Stanford (2010)

    Google Scholar 

  113. Omodeo, E.G., Policriti, A., Tomescu, A.I.: Stating infinity in Set/Hyperset theory. Rend. Istit. Mat. Univ. Trieste 42, 207–212 (2010)

    MathSciNet  Google Scholar 

  114. Omodeo, E.G., Policriti, A., Tomescu, A.I.: Infinity, in short. J. Log. Comput. 22(6), 1391–1403 (2012)

    Article  MathSciNet  Google Scholar 

  115. Omodeo, E.G., Policriti, A., Tomescu, A.I.: On Sets and Graphs: Perspectives on Logic and Combinatorics. Springer (2017). Foreword by Ernst-Erich Doberkat. https://link.springer.com/book/10.1007%2F978-3-319-54981-1

  116. Omodeo, E.G., Policriti, A., Tomescu, A.I.: Set-syllogistics meet combinatorics. Math. Struct. Comput. Sci. 27(2), 296–310 (2017)

    Article  MathSciNet  Google Scholar 

  117. Omodeo, E.G., Schwartz, J.T.: A ‘Theory’ mechanism for a proof-verifier based on first-order set theory. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond, Part II. LNCS (LNAI), vol. 2408, pp. 214–230. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45632-5_9

    Chapter  Google Scholar 

  118. Omodeo, E.G., Tomescu, A.I.: Using ÆtnaNova to formally prove that the Davis-Putnam satisfiability test is correct. Le Matematiche LXIII, Fasc. I, 85–105 (2008)

    Google Scholar 

  119. Omodeo, E.G., Tomescu, A.I.: Appendix: claw-free graphs as sets. In: Davis and Schonberg [72], pp. 131–167

    Google Scholar 

  120. Omodeo, E.G., Tomescu, A.I.: Set graphs. III. Proof Pearl: claw-free graphs mirrored into transitive hereditarily finite sets. J. Autom. Reason. 52(1), 1–29 (2014)

    Article  MathSciNet  Google Scholar 

  121. Omodeo, E.G., Tomescu, A.I.: Set Graphs. V. On representing graphs as membership digraphs. J. Log. Comput. 25(3), 899–919 (2015)

    Article  MathSciNet  Google Scholar 

  122. Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM Trans. Program. Lang. Syst. 4(3), 402–454 (1982). https://doi.org/10.1145/357172.357177

    Article  Google Scholar 

  123. Papadimitriou, C.H.: On the complexity of Integer Programming. J. ACM 28(4), 765–768 (1981)

    Article  MathSciNet  Google Scholar 

  124. Parlamento, F., Policriti, A.: Decision procedures for elementary sublanguages of set theory. IX. Unsolvability of the decision problem for a restricted subclass of \({\Delta }_ {0}\)-formulas in set theory. Comm. Pure Appl. Math. 41, 221–251 (1988)

    Google Scholar 

  125. Parlamento, F., Policriti, A.: The logically simplest form of the infinity axiom. Proc. Amer. Math. Soc. 103(1), 274–276 (1988)

    Article  MathSciNet  Google Scholar 

  126. Parlamento, F., Policriti, A.: Note on “The logically simplest form of the infinity axiom". Proc. Amer. Math. Soc. 108(1), 285–286 (1990)

    MathSciNet  Google Scholar 

  127. Parlamento, F., Policriti, A.: Expressing infinity without foundation. J. Symb. Logic 56(4), 1230–1235 (1991)

    Article  MathSciNet  Google Scholar 

  128. Parlamento, F., Policriti, A.: Undecidability results for restricted universally quantified formulae of set theory. Comm. Pure Appl. Math. 46(1), 57–73 (1993)

    Article  MathSciNet  Google Scholar 

  129. Pastre, D.: Automatic theorem proving in Set Theory. Artif. Intell. 10(1), 1–27 (1978)

    Article  MathSciNet  Google Scholar 

  130. Pellegrini, M., Sepe, R.: SetLog, a tool for experimenting with new semantics. ACM SIGPLAN Not. 26(2), 67–74 (1991)

    Article  Google Scholar 

  131. Quine, W.V.: Methods of Logic. Henry Holt, New York (1950)

    Google Scholar 

  132. Robinson, R.M.: The theory of classes A modification of von Neumann’s system. J. Symb. Logic 2(1), 29–36 (1937)

    Article  Google Scholar 

  133. Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)

    Google Scholar 

  134. Schaub, T., Thielscher, M.: Skeptical query-answering in constrained default logic. In: Gabbay, D.M., Ohlbach, H.J. (eds.) FAPR 1996. LNCS, vol. 1085, pp. 567–581. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61313-7_101

    Chapter  Google Scholar 

  135. Schwartz, J.T.: Instantiation and decision procedures for certain classes of quantified set-theoretic formulae. Technical Report 78–10, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, Virginia, August 1978

    Google Scholar 

  136. Schwartz, J.T., Cantone, D., Omodeo, E.G.: Computational Logic and Set Theory — Applying Formalized Logic to Analysis. Springer, London (2011). Foreword by Martin D. Davis

    Google Scholar 

  137. Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with sets: An introduction to SETL. Texts and Monographs in Computer Science, Springer, New York (1986)

    Book  Google Scholar 

  138. Sigal, R.: Desiderata for logic programming with sets. In: Mello, P. (ed.) Atti del quarto convegno nazionale sulla programmazione logica (GULP 1989, Bologna), pp. 127–141 (1989)

    Google Scholar 

  139. Smullyan, R.M.: First-order Logic. Dover books on Advanced Math, Dover (1995)

    Google Scholar 

  140. Stevens, L.: Towards a verified prover for a ground fragment of set theory (2022). https://arxiv.org/abs/2209.14133

  141. Stevens, L.: Towards a verified tableau prover for a quantifier-free fragment of set theory. In: Pientka, B., Tinelli, C. (eds.) Automated Deduction - CADE 29. LNCS, vol. 14132, pp. 491–508. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38499-8_28

    Chapter  Google Scholar 

  142. Tarski, A.: A decision method for elementary algebra and geometry. Technical Report U.S. Air Force Project RAND R-109, the RAND Corporation, Santa Monica, Ca, iv+60 pp., 1948. Prepared for publication by J.C.C. McKinsey; a 2nd revised edition was published by the University of California Press, Berkeley and Los Angeles, iii+63 pp. (1951)

    Google Scholar 

  143. Vaught, R.L.: On a theorem of Cobham concerning undecidable theories. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Proceedings of the 1960 International Congress on Logic, Methodology, and Philosophy of Science, pp. 14–25. Stanford University Press (1962)

    Google Scholar 

  144. World Wide Web Consortium (W3C): SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2004)

    Google Scholar 

  145. World Wide Web Consortium: OWL 2 Web ontology language structural specification and functional-style syntax (second edition), December 2012

    Google Scholar 

Download references

Acknowledgments

We are grateful to Daniele Santamaria for contributing to Sect. 3.5.

We gratefully acknowledge partial support from project “STORAGE—Università degli Studi di Catania, Piano della Ricerca 2020/2022, Linea di intervento 2”, and from INdAM-GNCS 2019 and 2020 research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Cantone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cantone, D., Omodeo, E.G. (2024). Onset and Today’s Perspectives of Multilevel Syllogistic. In: Cantone, D., Pulvirenti, A. (eds) From Computational Logic to Computational Biology. Lecture Notes in Computer Science, vol 14070. Springer, Cham. https://doi.org/10.1007/978-3-031-55248-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55248-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55247-2

  • Online ISBN: 978-3-031-55248-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics