Abstract
We report on the initial phases of a systematic study (undertaken over forty years ago) on decidable fragments of Set Theory, to which Alfredo Ferro contributed and which later branched out in many directions. The impact that research has had so far and will continue to have, mainly in the areas of proof-checking, program-correctness verification, declarative programming—and, more recently, reasoning within description logics—is also highlighted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This happening left a very profound impression on Alfredo, who afterward developed a strong religious involvement.
- 2.
The case \(\textsf{at}(x) = \emptyset \) has been introduced here just to make the map \(\textsf{at}\) total on V.
- 3.
The problem of producing a concrete model for any satisfiable formula (being also able to flag when none exists) is sometimes called satisfaction problem: hence, for MLS, this problem is algorithmically solvable.
- 4.
Set-terms of the form \(\left\{ {s_0,\dots ,s_N}\right\} \), which can be seen as abbreviating \(\left\{ {s_0}\right\} \cup \cdots \cup \left\{ {s_N}\right\} \), enter into play for free with singleton.
- 5.
See also [85, 87] and cf. footnote 14 below. Early decidability-related results concerning arb relied on the assumption that a strict well-ordering \(\lhd \) of the universe of all sets, complying with various conditions, is available and that \({\textsf {arb}}\!\left( {s}\right) \) chooses the \(\lhd \)-least element of s from each non-empty set s. One of the conditions imposed on \(\lhd \) entails that \(x\lhd y\) holds when \(x\in y\); in addition, \(\lhd \) must be anti-lexicographic over finite sets, which means: \(\left\{ {x_{m+p},\dots ,x_{m},\dots ,x_{1}}\right\} \lhd \big (\left\{ {y_{q+1},\dots ,y_{1}}\right\} \cup \left\{ {x_{m},\dots ,x_{1}}\right\} \big )\) follows from \( x_{m+p}\lhd \cdots \lhd x_m\lhd \cdots \lhd x_1\ \,{\small \& }\,\ y_{q+1}\lhd \cdots \lhd y_{1}\lhd x_m\ \,{\small \& }\,\ \big (p=0\ \,\vee \,\ (p>0\ \,{\small \& }\,\ x_{m+1}\lhd y_{1})\big )\).
- 6.
I had been introduced to Alfredo by the late Filippo Chiarenza, one of his very close friends and fellow students, at a beach in the Catania shoreline, a couple of years before in the summer of 1979, when Alfredo was temporarily back to Catania to get married to his beloved wife Pina Carrà.
- 7.
“Decidability issues in set theory”.
- 8.
Places have been defined in Sect. 1.3.
- 9.
Actually, power-set clauses impose stronger constraints than union clauses do, insofar as the implication
is true for all sets x and y , while the converse implication does not hold in general.
- 10.
Correct modeling of also the literals of the forms \(x = y \cup z\), \(x = y \cap z\), and \(x = y \setminus z\) was ensured since the sets \(\overline{\alpha }\), with \(\alpha \in \varPi \), were maintained mutually disjoint during the stabilization phase too.
- 11.
Compared with the very weak aggregate theory \(\mathsf {Z_1}\) treated by Robert L. Vaught, which is generated by the empty set axiom and the adjunction axiom alone (cf. [143, p. 21]), the systems studied by Parlamento and Policriti ensure a more transparent syntax arithmetization and a tighter connection with computability theory.
- 12.
The term hyperset was first proposed in [3] to mean—in a universe modeling Aczel’s AFA—a ‘set’ \(x_0\) whose transitive closure is potentially ill-formed, in the sense that membership may form an infinite descending chain \(x_0\ni x_1\ni x_2\ni \cdots \) .
- 13.
One often dubs as ‘free’ or ‘uninterpreted’ those symbols that are not subdued to any axiomatic constraint; this is not the case of \(\textsf {with}\), which must comply with the laws \(x\ \textsf {with}\ y\ \textsf {with}\ z=x\ \textsf {with}\ z\ \textsf {with}\ y\) and \(x\ \textsf {with}\ y\ \textsf {with}\ y=x\ \textsf {with}\ y\) .
- 14.
- 15.
We mean here the problem of determining whether or not a sentence of the said form \(\exists \,x_1\cdots \exists \,x_N\,\forall \,y\,\mu \) (with \(N\geqslant 0\)) is satisfiable in the standard universe of sets. We will be more explicit on the notation \(\exists ^*\forall \) in footnote (see footnote 16).
- 16.
To stay aligned with the literature cited in this section, we slightly depart from the notation used above to classify prenex formulae according to their quantificational prefix. Here and below, \(\exists ^*\) and \(\forall ^*\) denote batches (possibly empty) of alike quantifiers, while \(\exists \exists \) and \(\forall \forall \) denote two consecutive quantifiers of existential, respectively universal, type.
References
Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Pub. Co., Amsterdam (1954)
Aczel, P.: Non-Well-Founded Sets, vol. 14. CSLI Lecture Notes, Stanford (1988)
Barwise, J., Moss, L.: Hypersets. Math. Intell. 13(4), 31–41 (1991)
Behmann, H.: Beiträge zur Algebra der Logik insbesondere zum Entscheidungsproblem. Math. Ann. 86, 163–220 (1922)
Bellè, D., Parlamento, F.: Truth in V for \(\exists ^\ast \forall \forall \)-sentences is decidable. J. Symb. Logic 71(4), 1200–1222 (2006)
Bellè, D., Parlamento, F.: Decidability of \(\exists ^\ast \forall \forall \)-sentences in HF. Notre Dame J. Formal Logic 49(1), 55–64 (2008)
Bergenti, F., Monica, S., Rossi, G.: Constraint logic programming with polynomial constraints over finite domains. Fundam. Informaticae 161(1–2), 9–27 (2018)
Bledsoe, W.W.: Non-resolution theorem proving. Artif. Intell. 9(1), 1–35 (1977)
Börger, E., Grädel, E., Gurevich, Yu.: The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, Heidelberg (1997)
Breban, M.: Decision algorithms for a class of set-theoretic formulae involving one occurrence of union-set operator. Ph.D. thesis, NYU/GSAS (1982)
Breban, M., Ferro, A.: Decision procedures for elementary sublanguages of set theory. III. Restricted classes of formulas involving the power set operator and the general set union operator. Adv. in Appl. Math. 5(2), 147–215 (1984)
Breban, M., Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. II. Formulas involving restricted quantifiers, together with ordinal, integer, map, and domain notions. Comm. Pure Appl. Math. 34, 177–195 (1981)
Buriola, G., Cantone, D., Cincotti, G., Omodeo, E.G., Spartà, G.T.: A decidable theory involving addition of differentiable real functions. Theor. Comput. Sci. 940(Part A), 124–148 (2023)
Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive description logics: an automata-theoretic approach. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, Vancouver, British Columbia, Canada, 22–26 July 2007, pp. 391–396. AAAI Press (2007)
Cantone, D.: A decision procedure for a class of unquantified formulae of set theory involving the powerset and singleton operators. Ph.D. thesis, NYU/GSAS (1987)
Cantone, D.: A survey of computable set theory. Le Matematiche XLII I(1), 125–194 (1988)
Cantone, D.: Decision procedures for elementary sublanguages of set theory. X. Multilevel syllogistic extended by the singleton and powerset operators. J. Autom. Reason. 7(2), 193–230 (1991)
Cantone, D.: A fast saturation strategy for set-theoretic tableaux. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 122–137. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0027409
Cantone, D.: Decision procedures for elementary sublanguages of set theory. XVII. Commonly occurring extensions of multi-level syllogistic. In: Davis, M., Schonberg, E. (eds.) From Linear Operators to Computational Biology, pp. 47–85. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4282-9_5
Cantone, D., Cutello, V.: A decidable fragment of the elementary theory of relations and some applications. In: Watanabe, S., Nagata, M. (eds.) Proceedings of the 1990 International Symposium on Symbolic and Algebraic Computation, ISSAC 1990, Tokyo, Japan, 20–24 August 1990, pp. 24–29. ACM Press, New York (1990)
Cantone, D., Cutello, V.: On the decidability problem for a topological syllogistic involving the notion of topological product. Technical Report TR-91-029, International Computer Science Institute, Berkeley, CA, May 1991
Cantone, D., Cutello, V.: Decision algorithms for elementary topology. I. Topological syllogistic with set and map constructs, connectedness and cardinality comparison. Comm. Pure Appl. Math. 47(9), 1197–1217 (1994)
Cantone, D., Cutello, V., Policriti, A.: Set-theoretic reductions of Hilbert’s tenth problem. In: Börger, E., Büning, H.K., Richter, M.M. (eds.) CSL 1989. LNCS, vol. 440, pp. 65–75. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52753-2_32
Cantone, D., Cutello, V., Schwartz, J.T.: Decision problems for tarski and presburger arithmetics extended with sets. In: Börger, E., Kleine Büning, H., Richter, M.M., Schönfeld, W. (eds.) CSL 1990. LNCS, vol. 533, pp. 95–109. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54487-9_54
Cantone, D., De Domenico, A., Maugeri, P., Omodeo, E.G.: Complexity assessments for decidable fragments of set theory. IV: A quadratic reduction of constraints over nested sets to Boolean formulae (2021). https://arxiv.org/abs/2112.04797
Cantone, D., De Domenico, A., Maugeri, P., Omodeo, E.G.: Complexity assessments for decidable fragments of set theory. I: a taxonomy for the Boolean case. Fundam. Informaticae 181(1), 37–69 (2021)
Cantone, D., Ferro, A.: Techniques of computable set theory with applications to proof verification. Comm. Pure Appl. Math. 48(9), 901–945 (1995)
Cantone, D., Ferro, A., Micale, B., Sorace, G.: Decision procedures for elementary sublanguages of set theory. IV. Formulae involving a rank operator or one occurrence of \(\varSigma (x)=\{\{y\}|y\in x\}\). Comm. Pure Appl. Math. 40(1), 37–77 (1987)
Cantone, D., Ferro, A., Omodeo, E.G.: Decision procedures for elementary sublanguages of set theory VIII: A semidecision procedure for finite satisfiability of unquantified set-theoretic formulae. Comm. Pure Appl. Math. 41(1), 105–120 (1988)
Cantone, D., Ferro, A., Omodeo, E.G.: Computable set theory, volume no.6 Oxford Science Publications of International Series of Monographs on Computer Science. Clarendon Press (1989). Foreword by Jacob T. Schwartz
Cantone, D., Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision algorithms for some fragments of analysis and related areas. Comm. Pure Appl. Math. 40(3), 281–300 (1987)
Cantone, D., Ferro, A., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. VI. Multilevel syllogistic extended by the powerset operator. Comm. Pure Appl. Math. 38(5), 549–571 (1985)
Cantone, D., Ferro, A., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. V. Multilevel syllogistic extended by the general union operator. J. Comput. Syst. Sci. 34(1), 1–18 (1987)
Cantone, D., Ghelfo, S., Omodeo, E.G.: The automation of syllogistic. I: Syllogistic normal forms. J. Symb. Comput. 6(1), 83–98 (1988)
Cantone, D., Longo, C.: A decidable quantified fragment of set theory with ordered pairs and some undecidable extensions. In: Faella, M., Murano, A. (eds.) Proceedings Third International Symposium on Games, Automata, Logics and Formal Verification, Napoli, Italy, 6–8th June 2012, volume 96 of Electronic Proceedings in Theoretical Computer Science, pp. 224–237. Open Publishing Association (2012). http://rvg.web.cse.unsw.edu.au/eptcs/Published/GandALF2012/Papers/628/arXiv.pdf
Cantone, D., Longo, C.: A decidable two-sorted quantified fragment of set theory with ordered pairs and some undecidable extensions. Theoret. Comput. Sci. 560, 307–325 (2014)
Cantone, D., Longo, C., Nicolosi-Asmundo, M.: A decision procedure for a two-sorted extension of multi-level syllogistic with the Cartesian product and some map constructs. In: Faber, W., Leone, N. (eds.) Proceedings of the 25th Italian Conference on Computational Logic (CILC 2010), Rende, Italy, 7–9 July 2010, vol. 598, pp. 1–18. CEUR Workshop Proc., June 2010. ISSN 1613-0073
Cantone, D., Longo, C., Nicolosi-Asmundo, M.: A decidable quantified fragment of set theory involving ordered pairs with applications to description logics. In: Bezem, M. (ed.) Computer Science Logic (CSL 2011) - 25th International Workshop/20th Annual Conference of the EACSL. Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 12, pp. 129–143. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2011)
Cantone, D., Longo, C., Nicolosi-Asmundo, M., Santamaria, D.F.: Web ontology representation and reasoning via fragments of set theory. In: ten Cate, B., Mileo, A. (eds.) RR 2015. LNCS, vol. 9209, pp. 61–76. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22002-4_6
Cantone, D., Longo, C., Pisasale, A.: Comparing description logics with multi-level syllogistics: the description logic \(\cal{DL}\langle {\sf MLSS}_{2,m}^{\times }\rangle \). In: Traverso, P. (ed.) 6th Workshop on Semantic Web Applications and Perspectives (Bressanone, Italy, 21–22 September 2010), pp. 1–13 (2010)
Cantone, D., Maugeri, P., Omodeo, E.G.: Complexity assessments for decidable fragments of set theory. II: a taxonomy for ‘small’ languages involving membership. Theor. Comput. Sci. 848, 28–46 (2020)
Cantone, D., Nicolosi-Asmundo, M.: On the satisfiability problem for a 4-level quantified syllogistic and some applications to modal logic. Fundam. Informaticae 124(4), 427–448 (2013)
Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: Conjunctive query answering via a fragment of set theory. In: Proceedings of ICTCS 2016, Lecce, 7–9 September. CEUR Workshop Proc., vol. 1720, pp. 23–35 (2016). ISSN 1613-0073
Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: A set-theoretic approach to ABox reasoning services. In: Costantini, S., Franconi, E., Van Woensel, W., Kontchakov, R., Sadri, F., Roman, D. (eds.) RuleML+RR 2017. LNCS, vol. 10364, pp. 87–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61252-2_7
Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: A C++ reasoner for the description logic \(\cal{DL}_{\textbf{D}}^{4,\!\times }\). In: Proceedings of CILC 2017, Naples, Italy, 26–29 September 2017. CEUR Workshop Proc., vol. 1949, pp. 276–280 (2017). ISSN 1613-0073
Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: An optimized KE-tableau-based system for reasoning in the description logic \({\cal{DL}}_{{\textbf{D}}}^{4,\!\times }\). In: Benzmüller, C., Ricca, F., Parent, X., Roman, D. (eds.) RuleML+RR 2018. LNCS, vol. 11092, pp. 239–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99906-7_16
Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: A set-theoretic approach to reasoning services for the description logic \(\cal{DL}_{\textbf{D}}^{4,\!\times }\). Fundam. Informaticae 176, 349–384 (2020)
Cantone, D., Nicolosi-Asmundo, M., Santamaria, D.F.: An improved set-based reasoner for the description logic \(\cal{DL}_{\textbf{D}}^{4,\!\times }\). Fundam. Informaticae 178(4), 315–346 (2021)
Cantone, D., Omodeo, E.G.: On the decidability of formulae involving continuous and closed functions. In: Sridharan, N.S. (ed.) Proceedings of the 11th International Joint Conference on Artificial Intelligence, Detroit, MI, USA, August 1989, vol. 1, pp. 425–430. Morgan Kaufmann (1989)
Cantone, D., Omodeo, E.G.: Topological syllogistic with continuous and closed functions. Comm. Pure Appl. Math. 42(8), 1175–1188 (1989)
Cantone, D., Omodeo, E.G., Panettiere, M.: From Hilbert’s 10th problem to slim, undecidable fragments of set theory. In: Cordasco, G., Gargano, L., Rescigno, A.A. (eds.) Proceedings of the 21st Italian Conference on Theoretical Computer Science, Ischia, Italy, 14–16 September 2020, volume 2756 of CEUR Workshop Proc., pp. 47–60. CEUR-WS.org (2020)
Cantone, D., Omodeo, E.G., Panettiere, M.: Very weak, essentially undecidable set theories. In: Monica, S., Bergenti, F. (eds.) Proceedings of the 36th Italian Conference on Computational Logic, Parma, Italy, 7–9 September 2021, volume 3002 of CEUR Workshop Proc., pp. 31–46. CEUR-WS.org (2021)
Cantone, D., Omodeo, E.G., Policriti, A.: The automation of syllogistic. II: optimization and complexity issues. J. Autom. Reason. 6(2), 173–187 (1990)
Cantone, D., Omodeo, E.G., Policriti, A.: Set Theory for Computing. From Decision Procedures to Declarative Programming with Sets. Texts and Monographs in Computer Science. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-3452-2
Cantone, D., Omodeo, E.G., Policriti, A.: Banishing ultrafilters from our consciousness. In: Omodeo, E.G., Policriti, A. (eds.) Martin Davis on Computability, Computational Logic, and Mathematical Foundations. OCL, vol. 10, pp. 255–283. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41842-1_10
Cantone, D., Omodeo, E.G., Schwartz, J.T., Ursino, P.: Notes from the logbook of a proof-checker’s project*. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 182–207. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39910-0_8
Cantone, D., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. XI. Multilevel syllogistic extended by some elementary map constructs. J. Autom. Reason. 7(2), 231–256 (1991)
Cantone, D., Ursino, P.: Formative processes with applications to the decision problem in set theory: II. Powerset and singleton operators, finiteness predicate. Inf. Comput. 237, 215–242 (2014)
Cantone, D., Ursino, P.: An Introduction to the Technique of Formative Processes in Set Theory. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74778-1
Cantone, D., Ursino, P.: Decidability of the satisfiability problem for Boolean set theory with the unordered Cartesian product operator. ACM Trans. Comput. Log. 25(1), 1–30 (2024). Article 5
Cantone, D., Ursino, P., Omodeo, E.G.: Formative processes with applications to the decision problem in set theory: I. Powerset and singleton operators. Inf. Comput. 172(2), 165–201 (2002)
Cantone, D., Zarba, C.G.: A new fast tableau-based decision procedure for an unquantified fragment of set theory. In: Caferra, R., Salzer, G. (eds.) Automated Deduction in Classical and Non-Classical Logics, Selected Papers. LCNS, vol. 1761, pp. 126–136. Springer, Heidelberg (2000)
Cantone, D., Zarba, C.G.: A tableau-based decision procedure for a fragment of graph theory involving reachability and acyclicity. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 93–107. Springer, Heidelberg (2005). https://doi.org/10.1007/11554554_9
Cantone, D., Zarba, C.G.: A decision procedure for monotone functions over bounded and complete lattices. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments II. LNCS (LNAI), vol. 4342, pp. 318–333. Springer, Heidelberg (2006). https://doi.org/10.1007/11964810_15
Casagrande, A., Di Cosmo, F., Omodeo, E.G.: On perfect matchings for some bipartite graphs. In: Cristiá et al. [70], pp. 38–51
Casagrande, A., Omodeo, E.G.: Reasoning about connectivity without paths. In: Bistarelli, S., Formisano, A. (eds.) Proceedings of the 15th Italian Conference on Theoretical Computer Science, Perugia, Italy, 17–19 September 2014, volume 1231 of CEUR Workshop Proc., pp. 93–108. CEUR-WS.org (2014)
Ceterchi, R., Omodeo, E.G., Tomescu, A.I.: The representation of Boolean algebras in the spotlight of a proof checker. In: Giordano, L., Gliozzi, V., Pozzato, G.L. (eds.) Proceedings 29th Italian Conference on Computational Logic, Torino, Italy, 16–18 June 2014, volume 1195 of CEUR Workshop Proc., pp. 287–301. CEUR-WS.org (2014)
Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. LNCS, vol. 33, pp. 134–183. Springer, Vienna (1975). https://doi.org/10.1007/978-3-7091-9459-1_4
Cristiá, M., Delahaye, D., Dubois, C. (eds.) Proceedings of the 3rd International Workshop on Sets and Tools co-located with the 6th International ABZ Conference, SETS@ABZ 2018, Southamptom, UK, 5 June 2018, volume 2199 of CEUR Workshop Proc. CEUR-WS.org (2018)
Cristiá, M., Rossi, G., Frydman, C.: log as a test case generator for the test template framework. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 229–243. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40561-7_16
Davis, M., Schonberg, E. (eds.): From Linear Operators to Computational Biology: Essays in Memory of Jacob T Schwartz. Springer, London (2013)
Davis, M., Schwartz, J.T.: Correct-program technology / Extensibility of verifiers - Two papers on Program Verification with Appendix of Edith Deak. Technical Report No. NSO-12, Courant Institute of Mathematical Sciences, New York University, September 1977
Davis, M., Schwartz, J.T.: Metamathematical extensibility for theorem verifiers and proof-checkers. Comput. Math. Appl. 5(3), 217–230 (1979)
Dewar, R.: SETL and the evolution of programming. In: Davis and Schonberg [72], pp. 39–46
Doberkat, E.-E., Fox, D.: Software Prototyping MIT SETL. Teubner, Stuttgart (1989). https://link.springer.com/book/10.1007/978-3-322-94710-9
Dovier, A., Formisano, A., Omodeo, E.G.: Decidability results for sets with atoms. ACM Trans. Comput. Log. 7(2), 269–301 (2006)
Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: \(\{\)log\(\}\): a logic programming language with finite sets. In: Furukawa, K. (ed.) Logic Programming, Proceedings of the Eighth International Conference, Paris, France, 24–28 June 1991, pp. 111–124. MIT Press (1991)
Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: \(\{\)log\(\}\): a language for programming in logic with finite sets. J. Log. Program. 28(1), 1–44 (1996)
Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for lists, multisets, compact lists, and sets. ACM Trans. Comput. Log. 9(3), 15:1-15:30 (2008)
Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theory Pract. Log Program 6(6), 645–701 (2006)
Dreben, B., Goldfarb, W.D.: The Decision Problem. Solvable Classes of Quantificational Formulas. Advanced Book Program. Addison-Wesley Publishing Company, Reading (1979)
Farmer, W.M., Guttman, J.D., Thayer, F.J.: IMPS: an interactive mathematical proof system. J. Autom. Reason. 11, 213–248 (1993)
Ferro, A.: Decision procedures for some classes of unquantified set theoretic formulae. Ph.D. thesis, NYU / GSAS (1981)
Ferro, A.: A note on the decidability of MLS extended with the powerset operator. Commun. Pure Appl. Math. 38(4), 367–374 (1985)
Ferro, A.: Decision procedures for elementary sublanguages of set theory: XII. Multilevel syllogistic extended with singleton and choice operators. J. Autom. Reason. 7(2), 257–270 (1991)
Ferro, A., Omodeo, E.G.: An efficient validity test for formulae in extensional two-level syllogistic. Le Matematiche XXXIII, 130–137 (1978). In reality, this paper appeared in print in 1979 or 1980
Ferro, A., Omodeo, E.G.: Decision procedures for elementary sublanguages of set theory. VII. Validity in set theory when a choice operator is present. Comm. Pure Appl. Math. 40(3), 265–280 (1987)
Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. I. Multi-level syllogistic and some extensions. Comm. Pure Appl. Math. 33(5), 599–608 (1980)
Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision procedures for some fragments of set theory. In: Bibel, W., Kowalski, R. (eds.) CADE 1980. LNCS, vol. 87, pp. 88–96. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10009-1_8
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)
Giordano, L., Policriti, A.: Adding the power-set to description logics. Theor. Comput. Sci. 813, 155–174 (2020)
Gogol, D.: The \(\forall _{{{n}}}\exists \)-completeness of Zermelo-Fraenkel set theory. Zeitschr. f. math. Logik und Grundlagen d. Math. 24(19–24):289–290 (1978)
Goguen, J.A., Malcolm, G.: Algebraic Semantics of Imperative Programs. MIT Press, Cambridge (1996)
Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Princ. of Knowledge Representation and Reasoning, pp. 57–67. AAAI Press (2006)
Jech, T.: Set Theory. Springer Monographs in Mathematics, Third Millennium edition. Springer, Heidelberg (2003)
Keller, J.-P., Paige, R.: Program derivation with verified transformations - a case study. Comm. Pure Appl. Math. 48(9), 1053–1113 (1995). Special issue https://onlinelibrary.wiley.com/toc/10970312/1995/48/9, in honor of J. T. Schwartz
Lévy, A.: A Hierarchy of Formulas in Set Theory. A Hierarchy of Formulas in Set Theory. American Mathematical Society (1965)
Lewis, H.R.: Unsolvable Classes of Quantificational Formulas. Advanced Book Program. Addison-Wesley Publishing Company, Reading (1979)
Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980)
Lücke, J.: Hilberticus - a tool deciding an elementary sublanguage of set theory. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 690–695. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45744-5_57
Mancosu, P.: Between Russell and Hilbert: Behmann on the foundations of mathematics. Bull. Symbolic Logic 5(3), 303–330 (1999)
Manin,Yu.I.: A Course in Mathematical Logic. Graduate Texts in Mathematics. Springer, New York (1977). https://doi.org/10.1007/978-1-4757-4385-2
Matiyasevich, Yu.V., Desyataya Problema Gilberta. Fizmatlit, Moscow (1993). English translation: Hilbert’s Tenth Problem. The MIT Press, Cambridge (1993). French translation: Le dixième Problème de Hilbert: son indécidabilité, Masson, Paris Milan Barcelone (1995). http://logic.pdmi.ras.ru/~yumat/H10Pbook/
Omodeo, E.G.: Decidability and proof procedures for set theory with a choice operator. Ph.D. thesis, NYU/GSAS (1984)
Omodeo, E.G.: L’automazione della sillogistica. Le Scienze (Italian edition of Scientific American) 218, 120–128, 143 (1986)
Omodeo, E.G.: The Ref proof-checker and its “common shared scenario”. In: Davis and Schonberg [72], pp. 121–131
Omodeo, E.G., Parlamento, F., Policriti, A.: A derived algorithm for evaluating \(\varepsilon \)-expressions over abstract sets. J. Symb. Comput. 15(5–6), 673–704 (1993). Special issue on Automatic Programming; A.W. Biermann and W. Bibel editors
Omodeo, E.G., Parlamento, F., Policriti, A.: Decidability of \(\exists ^{\ast }\forall \)-sentences in membership theories. Math. Log. Quart. 42(1), 41–58 (1996)
Omodeo, E.G., Policriti, A.: Solvable set/hyperset contexts: I. Some decision procedures for the pure, finite case. Comm. Pure Appl. Math. 48(9), 1123–1155 (1995). Special issue in honor of Jacob T. Schwartz
Omodeo, E.G., Policriti, A.: The Bernays-Schönfinkel-Ramsey class for set theory: semidecidability. J. Symb. Logic 75(2), 459–480 (2010)
Omodeo, E.G., Policriti, A.: The Bernays-Schönfinkel-Ramsey class for set theory: decidability. J. Symb. Logic 77(3), 896–918 (2012)
Omodeo, E.G., Policriti, A., Tomescu, A.I.: Statements of ill-founded infinity in Set Theory. In: Cegielski, P. (ed.) Studies in Weak Arithmetics. CLSI Lecture Notes, vol. 196, pp. 173–199. CLSI, Stanford (2010)
Omodeo, E.G., Policriti, A., Tomescu, A.I.: Stating infinity in Set/Hyperset theory. Rend. Istit. Mat. Univ. Trieste 42, 207–212 (2010)
Omodeo, E.G., Policriti, A., Tomescu, A.I.: Infinity, in short. J. Log. Comput. 22(6), 1391–1403 (2012)
Omodeo, E.G., Policriti, A., Tomescu, A.I.: On Sets and Graphs: Perspectives on Logic and Combinatorics. Springer (2017). Foreword by Ernst-Erich Doberkat. https://link.springer.com/book/10.1007%2F978-3-319-54981-1
Omodeo, E.G., Policriti, A., Tomescu, A.I.: Set-syllogistics meet combinatorics. Math. Struct. Comput. Sci. 27(2), 296–310 (2017)
Omodeo, E.G., Schwartz, J.T.: A ‘Theory’ mechanism for a proof-verifier based on first-order set theory. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond, Part II. LNCS (LNAI), vol. 2408, pp. 214–230. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45632-5_9
Omodeo, E.G., Tomescu, A.I.: Using ÆtnaNova to formally prove that the Davis-Putnam satisfiability test is correct. Le Matematiche LXIII, Fasc. I, 85–105 (2008)
Omodeo, E.G., Tomescu, A.I.: Appendix: claw-free graphs as sets. In: Davis and Schonberg [72], pp. 131–167
Omodeo, E.G., Tomescu, A.I.: Set graphs. III. Proof Pearl: claw-free graphs mirrored into transitive hereditarily finite sets. J. Autom. Reason. 52(1), 1–29 (2014)
Omodeo, E.G., Tomescu, A.I.: Set Graphs. V. On representing graphs as membership digraphs. J. Log. Comput. 25(3), 899–919 (2015)
Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM Trans. Program. Lang. Syst. 4(3), 402–454 (1982). https://doi.org/10.1145/357172.357177
Papadimitriou, C.H.: On the complexity of Integer Programming. J. ACM 28(4), 765–768 (1981)
Parlamento, F., Policriti, A.: Decision procedures for elementary sublanguages of set theory. IX. Unsolvability of the decision problem for a restricted subclass of \({\Delta }_ {0}\)-formulas in set theory. Comm. Pure Appl. Math. 41, 221–251 (1988)
Parlamento, F., Policriti, A.: The logically simplest form of the infinity axiom. Proc. Amer. Math. Soc. 103(1), 274–276 (1988)
Parlamento, F., Policriti, A.: Note on “The logically simplest form of the infinity axiom". Proc. Amer. Math. Soc. 108(1), 285–286 (1990)
Parlamento, F., Policriti, A.: Expressing infinity without foundation. J. Symb. Logic 56(4), 1230–1235 (1991)
Parlamento, F., Policriti, A.: Undecidability results for restricted universally quantified formulae of set theory. Comm. Pure Appl. Math. 46(1), 57–73 (1993)
Pastre, D.: Automatic theorem proving in Set Theory. Artif. Intell. 10(1), 1–27 (1978)
Pellegrini, M., Sepe, R.: SetLog, a tool for experimenting with new semantics. ACM SIGPLAN Not. 26(2), 67–74 (1991)
Quine, W.V.: Methods of Logic. Henry Holt, New York (1950)
Robinson, R.M.: The theory of classes A modification of von Neumann’s system. J. Symb. Logic 2(1), 29–36 (1937)
Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)
Schaub, T., Thielscher, M.: Skeptical query-answering in constrained default logic. In: Gabbay, D.M., Ohlbach, H.J. (eds.) FAPR 1996. LNCS, vol. 1085, pp. 567–581. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61313-7_101
Schwartz, J.T.: Instantiation and decision procedures for certain classes of quantified set-theoretic formulae. Technical Report 78–10, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, Virginia, August 1978
Schwartz, J.T., Cantone, D., Omodeo, E.G.: Computational Logic and Set Theory — Applying Formalized Logic to Analysis. Springer, London (2011). Foreword by Martin D. Davis
Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with sets: An introduction to SETL. Texts and Monographs in Computer Science, Springer, New York (1986)
Sigal, R.: Desiderata for logic programming with sets. In: Mello, P. (ed.) Atti del quarto convegno nazionale sulla programmazione logica (GULP 1989, Bologna), pp. 127–141 (1989)
Smullyan, R.M.: First-order Logic. Dover books on Advanced Math, Dover (1995)
Stevens, L.: Towards a verified prover for a ground fragment of set theory (2022). https://arxiv.org/abs/2209.14133
Stevens, L.: Towards a verified tableau prover for a quantifier-free fragment of set theory. In: Pientka, B., Tinelli, C. (eds.) Automated Deduction - CADE 29. LNCS, vol. 14132, pp. 491–508. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38499-8_28
Tarski, A.: A decision method for elementary algebra and geometry. Technical Report U.S. Air Force Project RAND R-109, the RAND Corporation, Santa Monica, Ca, iv+60 pp., 1948. Prepared for publication by J.C.C. McKinsey; a 2nd revised edition was published by the University of California Press, Berkeley and Los Angeles, iii+63 pp. (1951)
Vaught, R.L.: On a theorem of Cobham concerning undecidable theories. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Proceedings of the 1960 International Congress on Logic, Methodology, and Philosophy of Science, pp. 14–25. Stanford University Press (1962)
World Wide Web Consortium (W3C): SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2004)
World Wide Web Consortium: OWL 2 Web ontology language structural specification and functional-style syntax (second edition), December 2012
Acknowledgments
We are grateful to Daniele Santamaria for contributing to Sect. 3.5.
We gratefully acknowledge partial support from project “STORAGE—Università degli Studi di Catania, Piano della Ricerca 2020/2022, Linea di intervento 2”, and from INdAM-GNCS 2019 and 2020 research funds.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Cantone, D., Omodeo, E.G. (2024). Onset and Today’s Perspectives of Multilevel Syllogistic. In: Cantone, D., Pulvirenti, A. (eds) From Computational Logic to Computational Biology. Lecture Notes in Computer Science, vol 14070. Springer, Cham. https://doi.org/10.1007/978-3-031-55248-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-55248-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55247-2
Online ISBN: 978-3-031-55248-9
eBook Packages: Computer ScienceComputer Science (R0)