Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interpretable Deep Learning for System Identification Using Nonlinear Output Frequency Response Functions

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1454))

Included in the following conference series:

  • 51 Accesses

Abstract

Deep learning methods contain powerful tools for modelling nonlinear dynamic systems. However, these methods usually lack interpretability, so although they are useful for predicting outputs they tend to be less useful for giving insight into system characteristics. In this paper, we aim to demonstrate a method for interpreting and comparing deep learning models used in nonlinear system identification, using nonlinear output frequency response functions (NOFRFs). NOFRFs describe nonlinear dynamic system behaviour in the frequency domain, which is a classical way of interpreting and understanding system behaviour (via resonances, super and sub-harmonics, and energy transfer). We demonstrate the approach on a real system (a magneto-rheological damper), showing how different types of deep learning model, recurrent networks with gated recurrent units (GRUs) and long short term memory (LSTM), can be interpreted and compared in the frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billings, S.A.: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Wiley, Hoboken (2013)

    Book  Google Scholar 

  2. Billings, S.A., Tsang, K.M.: Spectral analysis for non-linear systems, part I: parametric non-linear spectral analysis. Mech. Syst. Signal Process. 3(4), 319–339 (1989)

    Article  Google Scholar 

  3. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Conference on Empirical Methods in Natural Language Processing (EMNLP 2014) (2014)

    Google Scholar 

  4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  5. Jacobs, W.R., Baldacchino, T., Dodd, T.J., Anderson, S.R.: Sparse Bayesian nonlinear system identification using variational inference. IEEE Trans. Autom. Control 63, 4172–4187 (2018)

    Article  MathSciNet  Google Scholar 

  6. Jacobs, W.R., Dodd, T.J., Anderson, S.R.: Frequency-domain analysis for nonlinear systems with time-domain model parameter uncertainty. IEEE Trans. Autom. Control 64(5), 1905–1915 (2019)

    Article  MathSciNet  Google Scholar 

  7. Lang, Z.Q., Billings, S.A.: Energy transfer properties of non-linear systems in the frequency domain. Int. J. Control 78(5), 345–362 (2005)

    Article  MathSciNet  Google Scholar 

  8. Ljung, L., Andersson, C., Tiels, K., Schön, T.B.: Deep learning and system identification. IFAC-PapersOnLine 53(2), 1175–1181 (2020). 21st IFAC World Congress

    Google Scholar 

  9. Ljung, L., Singh, R.: Version 8 of the Matlab system identification toolbox. IFAC Proc. Vol. 45(16), 1826–1831 (2012)

    Article  Google Scholar 

  10. Sjöberg, J., et al.: Nonlinear black-box modeling in system identification: a unified overview. Automatica 31(12), 1691–1724 (1995)

    Article  MathSciNet  Google Scholar 

  11. Wang, J., Sano, A., Chen, T., Huang, B.: Identification of Hammerstein systems without explicit parameterisation of non-linearity. Int. J. Control 82(5), 937–952 (2009)

    Article  MathSciNet  Google Scholar 

  12. Zhao, B., Cheng, C., Peng, Z., Dong, X., Meng, G.: Detecting the early damages in structures with nonlinear output frequency response functions and the CNN-LSTM model. IEEE Trans. Instrum. Meas. 69(12), 9557–9567 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean R. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jacobs, W., Anderson, S.R. (2024). Interpretable Deep Learning for System Identification Using Nonlinear Output Frequency Response Functions. In: Panoutsos, G., Mahfouf, M., Mihaylova, L.S. (eds) Advances in Computational Intelligence Systems. UKCI 2022. Advances in Intelligent Systems and Computing, vol 1454. Springer, Cham. https://doi.org/10.1007/978-3-031-55568-8_30

Download citation

Publish with us

Policies and ethics