Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Empowering Legal Citation Recommendation via Efficient Instruction-Tuning of Pre-trained Language Models

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14608))

Included in the following conference series:

  • 1072 Accesses

Abstract

The escalating volume of cases in legal adjudication has amplified the complexity of citing relevant regulations and authoritative cases, posing an increasing challenge for legal professionals. Current legal citation prediction methods, which are predominantly reliant on keyword or interest-based retrieval, are proving insufficient. In particular, Collaborative Filtering (CF) based legal recommendation methods exhibited low accuracy. In response to these challenges, we propose the Instruction GPT with Low-Rank Adaptation architecture (IGPT-LoRA), aiming to enhance the performance of legal citation recommendations and reduce computational demands by tuning Pre-trained Language Models (PLMs). IGPT-LoRA leverages prompting and efficient tuning strategies, thus offering a significant improvement over previous context-aware legal citation prediction methods. We design effective domain-specific instruction templates to guide the adaptation of PLMs for recommendation purposes, shedding light on the potential of prompt-based learning in the legal domain. Furthermore, we optimize the learning process with an efficient tuning layer - the Low-Rank Adaptation (LoRA) architecture - to bolster applicability. Experimental results on a real-world legal data set (BVA) demonstrate that IGPT-LoRA outperforms state-of-the-art methods, delivering substantial improvements in accuracy and also in training time and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://reglab.stanford.edu/data/bva-case-citation-dataset/.

  2. 2.

    https://huggingface.co/gpt2.

  3. 3.

    https://huggingface.co/gpt2-xl.

  4. 4.

    https://huggingface.co/roberta-base.

  5. 5.

    https://huggingface.co/.

  6. 6.

    Overall, we observed a slight decrease in the range of 0.2% to 0.4%.

References

  1. Ames, D., Handan-Nader, C., Ho, D.E., Marcus, D.: Due process and mass adjudication: crisis and reform. Stan. L. Rev. 72, 1 (2020)

    Google Scholar 

  2. Brin, S.: The PageRank citation ranking: bringing order to the web. In: Proceedings of ASIS, vol. 98, pp. 161–172 (1998)

    Google Scholar 

  3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  4. Caragea, C., Silvescu, A., Mitra, P., Giles, C.L.: Can’t see the forest for the trees? A citation recommendation system. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 111–114 (2013)

    Google Scholar 

  5. Chowdhery, A., et al.: PaLM: scaling language modeling with pathways. arXiv preprint arXiv:2204.02311 (2022)

  6. Dadgostari, F., Guim, M., Beling, P.A., Livermore, M.A., Rockmore, D.N.: Modeling law search as prediction. Artif. Intell. Law 29, 3–34 (2021)

    Article  Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Fowler, J.H., Johnson, T.R., Spriggs, J.F., Jeon, S., Wahlbeck, P.J.: Network analysis and the law: measuring the legal importance of precedents at the us supreme court. Polit. Anal. 15(3), 324–346 (2007)

    Article  Google Scholar 

  9. Ge, X., Chen, F., Jose, J.M., Ji, Z., Wu, Z., Liu, X.: Structured multi-modal feature embedding and alignment for image-sentence retrieval. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 5185–5193 (2021)

    Google Scholar 

  10. Ge, X., Chen, F., Xu, S., Tao, F., Jose, J.M.: Cross-modal semantic enhanced interaction for image-sentence retrieval. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 1022–1031 (2023)

    Google Scholar 

  11. Gori, M., Pucci, A.: Research paper recommender systems: a random-walk based approach. In: 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI 2006), pp. 778–781. IEEE (2006)

    Google Scholar 

  12. Gunawardana, A., Shani, G.: Evaluating recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 265–308. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_8

    Chapter  Google Scholar 

  13. He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., Neubig, G.: Towards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366 (2021)

  14. He, Q., Pei, J., Kifer, D., Mitra, P., Giles, L.: Context-aware citation recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 421–430 (2010)

    Google Scholar 

  15. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)

    Google Scholar 

  18. Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  19. Hu, Z., et al.: LLM-adapters: an adapter family for parameter-efficient fine-tuning of large language models. arXiv preprint arXiv:2304.01933 (2023)

  20. Huang, Z., et al.: Context-aware legal citation recommendation using deep learning. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law, pp. 79–88 (2021)

    Google Scholar 

  21. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge dIscovery and Data Mining, pp. 538–543 (2002)

    Google Scholar 

  22. Kim, S., Gholami, A., Yao, Z., Mahoney, M.W., Keutzer, K.: I-BERT: integer-only BERT quantization. In: International Conference on Machine Learning, pp. 5506–5518. PMLR (2021)

    Google Scholar 

  23. Lai, G., Xie, Q., Liu, H., Yang, Y., Hovy, E.: RACE: large-scale reading comprehension dataset from examinations. arXiv preprint arXiv:1704.04683 (2017)

  24. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)

  25. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019)

  26. Li, P.H., Fu, T.J., Ma, W.Y.: Why attention? Analyze BiLSTM deficiency and its remedies in the case of NER. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8236–8244 (2020)

    Google Scholar 

  27. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190 (2021)

  28. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 556–559 (2003)

    Google Scholar 

  29. Liu, X., et al.: P-Tuning v2: prompt tuning can be comparable to fine-tuning universally across scales and tasks. arXiv preprint arXiv:2110.07602 (2021)

  30. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  31. Ma, J., Ganchev, K., Weiss, D.: State-of-the-art Chinese word segmentation with Bi-LSTMs. arXiv preprint arXiv:1808.06511 (2018)

  32. McNee, S.M., et al.: On the recommending of citations for research papers. In: Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work, pp. 116–125 (2002)

    Google Scholar 

  33. Min, B., et al.: Recent advances in natural language processing via large pre-trained language models: a survey. ACM Comput. Surv. 56(2), 1–40 (2023)

    Article  Google Scholar 

  34. Ouyang, L., et al.: Training language models to follow instructions with human feedback. Adv. Neural. Inf. Process. Syst. 35, 27730–27744 (2022)

    Google Scholar 

  35. Pfeiffer, J., et al.: AdapterHub: a framework for adapting transformers. arXiv preprint arXiv:2007.07779 (2020)

  36. Pfeiffer, J., Vulić, I., Gurevych, I., Ruder, S.: MAD-X: an adapter-based framework for multi-task cross-lingual transfer. arXiv preprint arXiv:2005.00052 (2020)

  37. Prasanna, S., Rogers, A., Rumshisky, A.: When BERT plays the lottery, all tickets are winning. arXiv preprint arXiv:2005.00561 (2020)

  38. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  39. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  40. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

    MathSciNet  Google Scholar 

  41. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable questions for squad. arXiv preprint arXiv:1806.03822 (2018)

  42. Ritchie, A., Robertson, S., Teufel, S.: Comparing citation contexts for information retrieval. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 213–222 (2008)

    Google Scholar 

  43. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  44. Stamenkovic, D., Karatzoglou, A., Arapakis, I., Xin, X., Katevas, K.: Choosing the best of both worlds: diverse and novel recommendations through multi-objective reinforcement learning. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 957–965 (2022)

    Google Scholar 

  45. Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

  46. Wang, J., et al.: TransRec: learning transferable recommendation from mixture-of-modality feedback. arXiv preprint arXiv:2206.06190 (2022)

  47. Wang, J., Zhu, L., Dai, T., Wang, Y.: Deep memory network with Bi-LSTM for personalized context-aware citation recommendation. Neurocomputing 410, 103–113 (2020)

    Article  Google Scholar 

  48. Wang, J., Zhu, L., Dai, T., Xu, Q., Gao, T.: Low-rank and sparse matrix factorization with prior relations for recommender systems. Appl. Intell. 51, 3435–3449 (2021)

    Article  Google Scholar 

  49. Winkels, R., Boer, A., Vredebregt, B., Van Someren, A.: Towards a legal recommender system. In: JURIX, pp. 169–178 (2014)

    Google Scholar 

  50. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45 (2020)

    Google Scholar 

  51. Zhang, P., Koppaka, L.: Semantics-based legal citation network. In: Proceedings of the 11th International Conference on Artificial Intelligence and Law, pp. 123–130 (2007)

    Google Scholar 

  52. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. surv. (CSUR) 52(1), 1–38 (2019)

    Article  Google Scholar 

  53. Zhang, T., Zhu, L., Wang, J.: Neighborhood constraints based bayesian personalized ranking for explainable recommendation. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds.) Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, pp. 166–173. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25201-3_12

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Bansal, K., Arapakis, I., Ge, X., Jose, J.M. (2024). Empowering Legal Citation Recommendation via Efficient Instruction-Tuning of Pre-trained Language Models. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14608. Springer, Cham. https://doi.org/10.1007/978-3-031-56027-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56027-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56026-2

  • Online ISBN: 978-3-031-56027-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics