Abstract
In this paper, we discuss the issue of secure communication among devices with limited resources. We introduce a key agreement protocol that utilizes implicit certificates with elliptic curves specifically designed for devices with limited capacity. We establish a certification chain within a finite graph to depict the connection among nodes within the identical group and propose a workload distribution strategy across all cluster nodes. Additionally, we present a trust scheme that enables nodes to generate implicit certificates on an elliptic curve and securely create keys with their counterparts. The group leader acts as the root CA and constructs a hierarchical structure within the finite graph, establishing a certification chain in an organized manner with an intermediate certificate authority (ICA) at every level. This chain is utilized by nodes for generating and sharing implicit certificates, from which symmetric keys for communication between nodes are derived. We then implement the solution using TelosB sensors in the TOSSIM simulator with an AVL Tree. We evaluate the security and resilience of our proposed scheme through informal analysis and a formal model. The informal analysis demonstrates the robustness of our scheme in achieving key security objectives, while the formal analysis using the extended Canetti-Krawczyk (eCK) model confirms its security and efficiency. Furthermore, we compare the performance of our scheme with other related schemes, highlighting its effectiveness for resource-constrained devices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abba Ari, A.A., et al.: Optimizing relay sensors in large-scale wireless sensor networks: a biologically inspired approach. Int. J. Eng. Res. Afr. 63, 119–135 (2023)
Adelson-Velskij, G., Landis, E.: An algorithm for the organization of information. Doklady Akad. Nauk SSSR 146, 263–266 (1962)
Antipa, A., Brown, D., Menezes, A., Struik, R., Vanstone, S.: Validation of elliptic curve public keys. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 211–223. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_16
Ari, A.A.A., Djam-Doudou, M., Njoya, A.N., Tchapgnouo, H.B., Thiare, O., Gueroui, A.M.: Towards a lightweight cryptographic key management system in IoT sensor networks. In: Woungang, I., Dhurandher, S.K. (eds.) WIDECOM 2023. LNDECT, vol. 185, pp. 29–45. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-47126-1_3
Ari, A.A.A., Yenke, B.O., Labraoui, N., Damakoa, I., Gueroui, A.: A power efficient cluster-based routing algorithm for wireless sensor networks: honeybees swarm intelligence based approach. J. Netw. Comput. Appl. 69, 77–97 (2016)
Babaghayou, M., Labraoui, N., Ari, A.A.A., Lagraa, N., Ferrag, M.A.: Pseudonym change-based privacy-preserving schemes in vehicular ad-hoc networks: a survey. J. Inf. Secur. Appl. 55, 102618 (2020)
Bellare, M., Rogaway, P.: Provably secure session key distribution– the three party case. In: Proceedings of 27th ACM Symposium on the Theory of Computing, October 1995. https://doi.org/10.1145/225058.225084
Benmansour, F.L., Labraoui, N.: A comprehensive review on swarm intelligence-based routing protocols in wireless multimedia sensor networks. Int. J. Wireless Inf. Networks 28(2), 175–198 (2021)
Blake-Wilson, S., Johnson, D., Menezes, A.: Key Agreement Protocols and their Security Analysis, pp. 30–45, April 2006. https://doi.org/10.1007/BFb0024447
Campagna, M.: Sec 4: Elliptic curve Qu-vanstone implicit certificate scheme (ECQV). Standards for Efficient Cryptography, Version 1 (2013)
Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638
Diffie, W., Hellman, M.: New Directions in Cryptography (1976), pp. 421–440, February 2021. https://doi.org/10.7551/mitpress/12274.003.0044
Djam-Doudou, M., et al.: A certificate-based pairwise key establishment protocol for IoT resource-constrained devices. In: Ngatched Nkouatchah, T.M., Woungang, I., Tapamo, J.R., Viriri, S. (eds.) Pan-African Artificial Intelligence and Smart Systems, vol. 459, pp. 3–18. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25271-6_1
Du, X., Xiao, Y., Ci, S., Guizani, M., Chen, H.H.: A routing-driven key management scheme for heterogeneous sensor networks. In: 2007 IEEE International Conference on Communications, pp. 3407–3412 (2007). https://doi.org/10.1109/ICC.2007.564
Eastlake, D., Jones, P.: US secure hash algorithm 1 (SHA-1), September 2001
Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985). https://doi.org/10.1109/TIT.1985.1057074
Gbadouissa, J.E.Z., Ari, A.A.A., Titouna, C., Gueroui, A.M., Thiare, O.: HGC: hypergraph based clustering scheme for power aware wireless sensor networks. Futur. Gener. Comput. Syst. 105, 175–183 (2020)
Jokhio, S.H., Jokhio, I.A., Kemp, A.H.: Node capture attack detection and defence in wireless sensor networks. IET Wirel. Sens. Syst. 2(3), 161–169 (2012)
Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 243–264 (1987). https://doi.org/10.1090/S0025-5718-1987-0866109-5
Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33
Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. Cryptology ePrint Archive, Paper 2005/176 (2005). https://eprint.iacr.org/2005/176
Kuila, P., Jana, P.K.: Energy efficient clustering and routing algorithms for wireless sensor networks: particle swarm optimization approach. Eng. Appl. Artif. Intelli. 33, 127–140 (2014). https://doi.org/10.1016/j.engappai.2014.04.009. https://www.sciencedirect.com/science/article/pii/S0952197614000852
LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_1
Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for authenticated key agreement. Des. Codes Cryptogr. 28, 119–134 (1999). https://doi.org/10.1023/A:1022595222606
Lee, J., Park, C.: An efficient authenticated key exchange protocol with a tight security reduction. IACR Cryptology ePrint Archive 2008, 345, January 2008
Lee, J., Park, J.: Authenticated key exchange secure under the computational Diffie-Hellman assumption. IACR Cryptology ePrint Archive 2008, 344, January 2008
LTTng: The linux trace toolkit next generation (2020). http://lttng.org/
Lu, R., Li, X., Liang, X., Shen, X., Lin, X.: GRS: the green, reliability, and security of emerging machine to machine communications. IEEE Commun. Mag. 49(4), 28–35 (2011). https://doi.org/10.1109/MCOM.2011.5741143
Menezes, A.: Another look at HMQV. J. Math. Cryptol. 1(1), 47–64 (2007). https://doi.org/10.1515/JMC.2007.004
Menezes, A., Ustaoglu, B.: On the importance of public-key validation in the MQV and HMQV key agreement protocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg (2006). https://doi.org/10.1007/11941378_11
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31
Njoya, A.N., et al.: Data prediction based encoder-decoder learning in wireless sensor networks. IEEE Access 10, 109340–109356 (2022)
Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory 24(1), 106–110 (1978). https://doi.org/10.1109/TIT.1978.1055817
Poornima, A., Amberker, B.: Tree-based key management scheme for heterogeneous sensor networks. In: 2008 16th IEEE International Conference on Networks, pp. 1–6. IEEE (2008)
Porambage, P., Kumar, P., Schmitt, C., Gurtov, A., Ylianttila, M.: Certificate-based pairwise key establishment protocol for wireless sensor networks. In: 2013 IEEE 16th International Conference on Computational Science and Engineering, pp. 667–674. IEEE (2013)
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342
Saidi, H., Labraoui, N., Ari, A.A.A., Maglaras, L., Emati, J.H.M.: DSMAC: privacy-aware decentralized self-management of data access control based on blockchain for health data. IEEE Access, 1 (2022). https://doi.org/10.1109/ACCESS.2022.3207803
Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22
Shoup, V.: On formal models for secure key exchange, October 2002
TELOSB: TELOSB datasheet. shorturl.at/krJNV (2022). Accessed 17 Feb 2022
Titouna, C., Aliouat, M., Gueroui, M.: FDS: fault detection scheme for wireless sensor networks. Wirel. Pers. Commun. 86 (2015). https://doi.org/10.1007/s11277-015-2944-7
Titouna, C., Ari, A.A.A., Moumen, H.: FDRA: fault detection and recovery algorithm for wireless sensor networks. In: Younas, M., Awan, I., Ghinea, G., Catalan Cid, M. (eds.) MobiWIS 2018. LNCS, vol. 10995, pp. 72–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97163-6_7
Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol for (H)MQV and NAXOS. Des. Codes Cryptogr. 46, 329–342 (2008). https://doi.org/10.1007/s10623-007-9159-1
Wen, W., Wang, L., Pan, J.: Unified security model of authenticated key exchange with specific adversarial capabilities. IET Inf. Secur. 10 (2015). https://doi.org/10.1049/iet-ifs.2014.0234
Xiao, Y., Rayi, V.K., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key management schemes in wireless sensor networks. Comput. Commun. 30(11), 2314–2341 (2007). https://doi.org/10.1016/j.comcom.2007.04.009. https://www.sciencedirect.com/science/article/pii/S0140366407001752, special issue on security on wireless ad hoc and sensor networks
Yao, A., Zhao, Y.: OAKE: a new family of implicitly authenticated Diffie-Hellman protocols, pp. 1113–1128, November 2013. https://doi.org/10.1145/2508859.2516695
Acknowledgement
The authors would like to thank the anonymous reviewers as well as the editors for their valuable remarks. This enabled us to better improve the content and presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Conflict of Interest statement
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Rights and permissions
Copyright information
© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Djam-Doudou, M. et al. (2024). A Lightweight Authenticated Key Agreement Scheme for Resource-Constrained Devices Based on Implicit Certificates and Finite Graphs. In: Tchakounte, F., Atemkeng, M., Rajagopalan, R.P. (eds) Safe, Secure, Ethical, Responsible Technologies and Emerging Applications. SAFER-TEA 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 566. Springer, Cham. https://doi.org/10.1007/978-3-031-56396-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-56396-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56395-9
Online ISBN: 978-3-031-56396-6
eBook Packages: Computer ScienceComputer Science (R0)