Abstract
Fuzzy Pattern Trees (FPTs) are tree-based structures in which the internal nodes are fuzzy operators, and the leaves are fuzzy features. This work uses Genetic Programming (GP) to evolve FPTs and assesses their performance on 20 benchmark classification problems. The results show improved accuracy for most of the problems in comparison with previous works using different approaches. Furthermore, we experiment using Lexicase Selection with FPTs and demonstrate that selection methods based on aggregate fitness, such as Tournament Selection, produce more accurate models before analysing why this is the case. We also propose new parsimony pressure methods embedded in Lexicase Selection, and analyse their ability to reduce the size of the solutions. The results show that for most problems, at least one method could reduce the size significantly while keeping a similar accuracy. We also introduce a new fuzzification scheme for categorical features with too many categories by using target encoding followed by the same scheme for numerical features, which is straightforward to implement, and avoids a much higher increase in the number of fuzzy features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Propublica data store. https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
Aenugu, S., Spector, L.: Lexicase selection in learning classifier systems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 356–364 (2019). https://doi.org/10.1145/3321707.3321828
Cordón, O.: A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int. J. Approximate Reasoning 52(6), 894–913 (2011). https://doi.org/10.1016/j.ijar.2011.03.004
de Lima, A., Carvalho, S., Dias, D.M., Naredo, E., Sullivan, J.P., Ryan, C.: Lexi2: lexicase selection with lexicographic parsimony pressure. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2022, pp. 929–937. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3512290.3528803
de Lima, A.D., Lopes, A.J., do Amaral, J.L.M., de Melo, P.L.: Explainable machine learning methods and respiratory oscillometry for the diagnosis of respiratory abnormalities in sarcoidosis. BMC Med. Inform. Decis. Making 22(1), 274 (2022). https://doi.org/10.1186/s12911-022-02021-2
Dos Santos, A.R., Amaral, J.L.M.: Synthesis of fuzzy pattern trees by cartesian genetic programming. Mathware Soft Comput.: Mag. Eur. Soc. Fuzzy Log. Technol. 22(1), 52–56 (2015)
Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)
Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Comput. Appl. 21(1), 171–187 (2012). https://doi.org/10.1007/s00521-011-0734-z
Helmuth, T., Lengler, J., La Cava, W.: Population diversity leads to short running times of lexicase selection. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) PPSN 2022. LNCS, vol. 13399, pp. 485–498. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14721-0_34
Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthesis: a diversity analysis. In: Riolo, R., Worzel, B., Kotanchek, M., Kordon, A. (eds.) Genetic Programming Theory and Practice XIII. GEC, pp. 151–167. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34223-8_9
Helmuth, T., Pantridge, E., Spector, L.: On the importance of specialists for lexicase selection. Genet. Program Evolvable Mach. 21(3), 349–373 (2020). https://doi.org/10.1007/s10710-020-09377-2
Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2015). https://doi.org/10.1109/TEVC.2014.2362729
Hernandez, J.G., Lalejini, A., Ofria, C.: An exploration of exploration: measuring the ability of lexicase selection to find obscure pathways to optimality. In: Banzhaf, W., Trujillo, L., Winkler, S., Worzel, B. (eds.) Genetic Programming Theory and Practice XVIII. Genetic and Evolutionary Computation, pp. 83–107. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-8113-4_5
Huang, Z., Gedeon, T.D., Nikravesh, M.: Pattern trees induction: a new machine learning method. IEEE Trans. Fuzzy Syst. 16(4), 958–970 (2008). https://doi.org/10.1109/TFUZZ.2008.924348
Jackson, D.: Promoting phenotypic diversity in genetic programming. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 472–481. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15871-1_48
Kooperberg, C.: StatLib: an archive for statistical software, datasets, and information. Am. Stat. 51(1), 98 (1997)
Koshiyama, A.S., Vellasco, M.M.B.R., Tanscheit, R.: GPFIS-CLASS: a genetic fuzzy system based on genetic programming for classification problems. Appl. Soft Comput. 37, 561–571 (2015). https://doi.org/10.1016/j.asoc.2015.08.055
La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 2016, pp. 741–748. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2908812.2908898
Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO 2002, pp. 829–836. Morgan Kaufmann Publishers Inc., San Francisco (2002)
Mei, Y., Chen, Q., Lensen, A., Xue, B., Zhang, M.: Explainable artificial intelligence by genetic programming: a survey. IEEE Trans. Evol. Comput. 27(3), 621–641 (2023). https://doi.org/10.1109/TEVC.2022.3225509
Miller, J.F.: Cartesian genetic programming. In: Miller, J.F. (ed.) Cartesian Genetic Programming. Natural Computing Series, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17310-3_2
Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995). https://doi.org/10.1162/evco.1995.3.2.199
Moore, J.M., Stanton, A.: Lexicase selection outperforms previous strategies for incremental evolution of virtual creature controllers. In: ECAL 2017, the Fourteenth European Conference on Artificial Life, pp. 290–297. MIT Press (2017). https://doi.org/10.1162/isal_a_050
Murphy, A., Ali, M., Dias, D., Amaral, J., Naredo, E., Ryan, C.: Grammar-based fuzzy pattern trees for classification problems. In: Proceedings of the 12th International Joint Conference on Computational Intelligence, pp. 71–80. SCITEPRESS - Science and Technology Publications, Budapest (2020). https://doi.org/10.5220/0010111900710080
Murphy, A., Ali, M.S., Mota Dias, D., Amaral, J., Naredo, E., Ryan, C.: Fuzzy pattern tree evolution using grammatical evolution. SN Comput. Sci. 3(6), 426 (2022). https://doi.org/10.1007/s42979-022-01258-y
Murphy, A., Murphy, G., Amaral, J., MotaDias, D., Naredo, E., Ryan, C.: Towards incorporating human knowledge in fuzzy pattern tree evolution. In: Hu, T., Lourenço, N., Medvet, E. (eds.) EuroGP 2021. LNCS, vol. 12691, pp. 66–81. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72812-0_5
Murphy, A., Murphy, G., Dias, D.M., Amaral, J., Naredo, E., Ryan, C.: Human in the loop fuzzy pattern tree evolution. SN Comput. Sci. 3(2), 163 (2022). https://doi.org/10.1007/s42979-022-01044-w
Rodrigues dos Santos, A., Machado do Amaral, J.L., Ribeiro Soares, C.A., Valladão de Barros, A.: Multi-objective fuzzy pattern trees. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2018). https://doi.org/10.1109/FUZZ-IEEE.2018.8491689
Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930
Senge, R., Hüllermeier, E.: Pattern trees for regression and fuzzy systems modeling. In: International Conference on Fuzzy Systems, pp. 1–7 (2010). https://doi.org/10.1109/FUZZY.2010.5584231
Senge, R., Hüllermeier, E.: Top-down induction of fuzzy pattern trees. IEEE Trans. Fuzzy Syst. 19(2), 241–252 (2011). https://doi.org/10.1109/TFUZZ.2010.2093532
Shaker, A., Senge, R., Hüllermeier, E.: Evolving fuzzy pattern trees for binary classification on data streams. Inf. Sci. 220, 34–45 (2013). https://doi.org/10.1016/j.ins.2012.02.034
Sobania, D., Rothlauf, F.: Program synthesis with genetic programming: the influence of batch sizes. In: Medvet, E., Pappa, G., Xue, B. (eds.) EuroGP 2022. LNCS, vol. 13223, pp. 118–129. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02056-8_8
Spector, L.: Assessment of problem modality by differential performance of lexicase selection in genetic programming: a preliminary report. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2012, pp. 401–408. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2330784.2330846
White, D.R., et al.: Better GP benchmarks: community survey results and proposals. Genet. Program Evolvable Mach. 14(1), 3–29 (2013). https://doi.org/10.1007/s10710-012-9177-2
Wilkinson, L., Anand, A., Tuan, D.N.: CHIRP: a new classifier based on composite hypercubes on iterated random projections. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 6–14. KDD 2011, Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2020408.2020418
Yi, Y., Fober, T., Hüllermeier, E.: Fuzzy operator trees for modeling rating functions. Int. J. Comput. Intell. Appl. 08(04), 413–428 (2009). https://doi.org/10.1142/S1469026809002679
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
de Lima, A., Carvalho, S., Dias, D.M., Amaral, J., Sullivan, J.P., Ryan, C. (2024). Fuzzy Pattern Trees for Classification Problems Using Genetic Programming. In: Giacobini, M., Xue, B., Manzoni, L. (eds) Genetic Programming. EuroGP 2024. Lecture Notes in Computer Science, vol 14631. Springer, Cham. https://doi.org/10.1007/978-3-031-56957-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-56957-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56956-2
Online ISBN: 978-3-031-56957-9
eBook Packages: Computer ScienceComputer Science (R0)