Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

What Impact Do My Preferences Have?

A Framework for Explanation-Based Elicitation of Quality Objectives for Robotic Mission Planning

  • Conference paper
  • First Online:
Requirements Engineering: Foundation for Software Quality (REFSQ 2024)

Abstract

[Context and motivation] Successful human-robot collaboration requires that humans can express their requirements and that they comprehend the decisions that robots make. Requirements in this context are often related to potentially conflicting quality objectives, such as performance, security, or safety. Humans tend to have preferences regarding how important different objectives are at different points in time.[Question/problem] Currently, preferences are often expressed based on assumptions of what importance level should be assigned to a quality objective at runtime. To assign meaningful preferences to quality objectives, it is important that humans understand the impact of these preferences on the behavior of a robot. To the best of our knowledge, there is yet no framework that supports the explanation-based elicitation of quality preferences. [Principal ideas/results] To address these needs, we have developed OBJUST, a framework that helps with the interactive elicitation of preferences for robot mission planning. [Contribution] The framework relies on the specification of human preferences and contrastive explanations. We evaluated our framework in a study with 7 participants. Our results indicate that the visual and textual explanations of the generated robotic mission plans help humans better understand the impact of their preferences, which can facilitate the elicitation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://doi.org/10.6084/m9.figshare.24006978.v1.

  2. 2.

    https://github.com/SE-CPS/OBJUST_public.

  3. 3.

    https://qualcoder.wordpress.com.

  4. 4.

    https://github.com/cmu-able/explainable-planning.

  5. 5.

    https://visjs.github.io/vis-network/docs.

References

  1. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adaptation. In: Proceedings of the 18th International Requirements Engineering Conference, pp. 125–134 (2010)

    Google Scholar 

  2. Bowers, K.M., Fredericks, E.M., Cheng, B.H.C.: Automated optimization of weighted non-functional objectives in self-adaptive systems. In: Colanzi, T.E., McMinn, P. (eds.) SSBSE 2018. LNCS, vol. 11036, pp. 182–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99241-9_9

    Chapter  Google Scholar 

  3. Bryl, V., Giorgini, P., Mylopoulos, J.: Supporting requirements analysis in Tropos: a planning-based approach. In: Ghose, A., Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS (LNAI), vol. 5044, pp. 243–254. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01639-4_21

    Chapter  Google Scholar 

  4. Byrne, J.G., Barlow, T.: Structured brainstorming: a method for collecting user requirements. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 37, pp. 427–431. SAGE Publications Sage CA: Los Angeles, CA (1993)

    Google Scholar 

  5. Candra, A., Budiman, M.A., Hartanto, K.: Dijkstra’s and a-star in finding the shortest path: a tutorial. In: Proceedings of the 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), pp. 28–32. IEEE (2020)

    Google Scholar 

  6. Chakraborti, T., Sreedharan, S., Grover, S., Kambhampati, S.: Plan explanations as model reconciliation. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), vol. 2019-March, pp. 258–266. IEEE (2019)

    Google Scholar 

  7. Chen, S., Boggess, K., Feng, L.: Towards transparent robotic planning via contrastive explanations. In: Proceedings of the IEEE/RSJ International on Intelligent Robots and Systems (IROS), pp. 6593–6598 (2020)

    Google Scholar 

  8. Chen, T., Li, K., Bahsoon, R., Yao, X.: FEMOSAA: feature-guided and knee-driven multi-objective optimization for self-adaptive software. ACM Trans. Soft. Eng. Methodol. 27(2), 1–50 (2018)

    Article  Google Scholar 

  9. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling approach to develop requirements of an adaptive system with environmental uncertainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0_36

    Chapter  Google Scholar 

  10. Coulin, C., Zowghi, D., Sahraoui, A.E.K.: A situational method engineering approach to requirements elicitation workshops in the software development process. Softw. Process Improv. Pract. 11(5), 451–464 (2006)

    Article  Google Scholar 

  11. Dennis Ding, X., Englot, B., Pinto, A., Speranzon, A., Surana, A.: Hierarchical multi-objective planning: from mission specifications to contingency management. In: Proceedings of the International Conference on Robotics and Automation, pp. 3735–3742 (2014)

    Google Scholar 

  12. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  13. Driewer, F., Sauer, M., Schilling, K.: Discussion of challenges for user interfaces in human-robot teams. In: Proceedings of the 3rd European Conference on Mobile Robots (2007)

    Google Scholar 

  14. Eifler, R., Brandao, M., Coles, A., Frank, J., Hoffmann, J.: Evaluating plan-property dependencies: a web-based platform and user study. In: Proceedings of the International Conference Automated Planning and Scheduling, vol. 32, pp. 687–691 (2022)

    Google Scholar 

  15. Flick, U.: The SAGE Handbook of Qualitative Data Collection. SAGE Publications Ltd, Thousand Oaks (2017)

    Google Scholar 

  16. Franco, Á.J., Assar, S.: Leveraging creativity techniques in requirements elicitation: a literature review. Requirements Eng. Mag. 2016(02), 1–15 (2016)

    Google Scholar 

  17. Garcia, M.P., Montiel, O., Castillo, O., Sepulveda, R., Melin, P.: Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 9(3), 1102–1110 (2009)

    Article  Google Scholar 

  18. Gasparetto, A., Zanotto, V.: Optimal trajectory planning for industrial robots. Adv. Eng. Softw. 41(4), 548–556 (2010)

    Article  Google Scholar 

  19. Goodrich, M.A., Schultz, A.C., et al.: Human-robot interaction: a survey. Found. Trends Hum.-Comput. Interact. 1(3), 203–275 (2008)

    Article  Google Scholar 

  20. Gulati, S., Jhurani, C., Kuipers, B., Longoria, R.: A framework for planning comfortable and customizable motion of an assistive mobile robot. In: Proceedings of the International Conference on Intelligent Robots and Systems, pp. 4253–4260. IEEE (2009)

    Google Scholar 

  21. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  22. Hassan, S., Bencomo, N., Bahsoon, R.: Minimizing nasty surprises with better informed decision-making in self-adaptive systems. In: Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 134–145 (2015)

    Google Scholar 

  23. Hellström, T., Bensch, S.: Understandable robots-what, why, and how. Paladyn, J. Behav. Robot. 9(1), 110–123 (2018)

    Article  Google Scholar 

  24. Hoffmann, J., Magazzeni, D.: Explainable AI planning (XAIP): overview and the case of contrastive explanation (Extended Abstract). In: Krötzsch, M., Stepanova, D. (eds.) Reasoning Web. Explainable Artificial Intelligence. LNCS, vol. 11810, pp. 277–282. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31423-1_9

    Chapter  Google Scholar 

  25. Iftikhar, M.U., Weyns, D.: ActivFORMS: Active formal models for self-adaptation. In: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 125–134. ACM, New York (2014)

    Google Scholar 

  26. Karur, K., Sharma, N., Dharmatti, C., Siegel, J.E.: A survey of path planning algorithms for mobile robots. Vehicles 3(3), 448–468 (2021)

    Article  Google Scholar 

  27. Krarup, B., Cashmore, M., Magazzeni, D., Miller, T.: Model-based contrastive explanations for explainable planning. In: Proceedings of the 29th International Conference on Automated Planning and Scheduling (2019)

    Google Scholar 

  28. Lera, F.J.R., Llamas, C.F., Guerrero, Á.M., Olivera, V.M.: Cybersecurity of robotics and autonomous systems: Privacy and safety. Robotics - Legal, Ethical and Socioeconomic Impacts (2017)

    Google Scholar 

  29. Li, N., Zhang, M., Li, J., Kang, E., Tei, K.: Preference adaptation: user satisfaction is all you need! In: Proceedings of the 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 133–144 (2023)

    Google Scholar 

  30. Liaskos, S., Jalman, R., Aranda, J.: On eliciting contribution measures in goal models. In: Proceedings of the 20th IEEE International Requirements Engineering Conference, pp. 221–230 (2012)

    Google Scholar 

  31. Lim, W.C.: Managing Software Reuse: a Comprehensive Guide to Strategically Reengineering the Organization for Reusable Components. Prentice-Hall, Inc., Hoboken (1998)

    Google Scholar 

  32. Mahdavi-Hezavehi, S., Durelli, V.H., Weyns, D., Avgeriou, P.: A systematic literature review on methods that handle multiple quality attributes in architecture-based self-adaptive systems. Inf. Softw. Technol. 90, 1–26 (2017)

    Article  Google Scholar 

  33. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  34. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-adaptive systems. In: Proceedings of the 2008 International Workshop on Software Eng. for Adaptive and Self-Managing Systems, pp. 9–16 (2008)

    Google Scholar 

  35. Paucar, L.H.G., Bencomo, N.: Re-pref: support for reassessment of preferences of non-functional requirements for better decision-making in self-adaptive systems. In: Proceedings of the 24th International Requirements Engineering Conference, pp. 411–414. IEEE (2016)

    Google Scholar 

  36. Prabhushankar, M., Kwon, G., Temel, D., AlRegib, G.: Contrastive explanations in neural networks. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 3289–3293. IEEE (2020)

    Google Scholar 

  37. Reynolds, O., García-Domínguez, A., Bencomo, N.: Automated provenance graphs for models@ run. time. In: Proceedings of the 23rd International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, pp. 1–10 (2020)

    Google Scholar 

  38. Saaty, R.: The analytic hierarchy process-what it is and how it is used. Math. Model. 9(3), 161–176 (1987)

    Article  MathSciNet  Google Scholar 

  39. Samin, H., Bencomo, N., Sawyer, P.: Pri-AwaRE: Tool support for priority-aware decision-making under uncertainty. In: Proceedings of the 29th Int’l Requirements Engineering Conference, pp. 450–451. IEEE (2021)

    Google Scholar 

  40. Samin, H., Bencomo, N., Sawyer, P.: Decision-making under uncertainty: be aware of your priorities. Softw. Syst. Model. 1–30 (2022). https://doi.org/10.1007/s10270-021-00956-0

  41. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-aware systems: a research agenda for RE for self-adaptive systems. In: Proceedings of the 2010 18th IEEE International Requirements Engineering Conference, pp. 95–103. IEEE (2010)

    Google Scholar 

  42. Setchi, R., Dehkordi, M.B., Khan, J.S.: Explainable robotics in human-robot interactions. Procedia Comput. Sci. 176, 3057–3066 (2020)

    Article  Google Scholar 

  43. Shaikh, M.T., Goodrich, M.A.: Design and evaluation of adverb palette: A gui for selecting tradeoffs in multi-objective optimization problems. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, pp. 389–397 (2017)

    Google Scholar 

  44. Soltani, A.R., Tawfik, H., Goulermas, J.Y., Fernando, T.: Path planning in construction sites: performance evaluation of the Dijkstra, A*, and GA search algorithms. Adv. Eng. Inform. 16(4), 291–303 (2002)

    Article  Google Scholar 

  45. Sukkerd, R., Simmons, R., Garlan, D.: Tradeoff-focused contrastive explanation for MDP planning. In: Proceedings of the 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1041–1048. IEEE (2020)

    Google Scholar 

  46. Tipaldi, M., Glielmo, L.: A survey on model-based mission planning and execution for autonomous spacecraft. IEEE Syst. J. 12(4), 3893–3905 (2017)

    Article  Google Scholar 

  47. Wang, H., Yu, Y., Yuan, Q.: Application of Dijkstra algorithm in robot path-planning. In: Proceedings of the International Conference on Mechanic Automation and Control Engineering, pp. 1067–1069. IEEE (2011)

    Google Scholar 

  48. Wang, X., Liu, Z., Liu, J.: Mobile robot path planning based on an improved A* algorithm. In: Proceedings of the International Conference on Computer Graphics, Artificial Intelligence, and Data Processing, vol. 12604, pp. 1093–1098. SPIE (2023)

    Google Scholar 

  49. Weyns, D., Gerostathopoulos, I., et al.: Preliminary results of a survey on the use of self-adaptation in industry. In: Proceedings of the 2022 International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 70–76 (2022)

    Google Scholar 

  50. Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engineering. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-43839-8

  51. Wohlrab, R., Garlan, D.: A negotiation support system for defining utility functions for multi-stakeholder self-adaptive systems. Requirements Eng. 28, 3–22 (2021)

    Google Scholar 

  52. Wohlrab, R., Meira-Góes, R., Vierhauser, M.: Run-time adaptation of quality attributes for automated planning. In: Proceedings of the 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems for Adaptive and Self-Managing Systems, pp. 98–105 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekka Wohlrab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wohlrab, R., Vierhauser, M., Nilsson, E. (2024). What Impact Do My Preferences Have?. In: Mendez, D., Moreira, A. (eds) Requirements Engineering: Foundation for Software Quality. REFSQ 2024. Lecture Notes in Computer Science, vol 14588. Springer, Cham. https://doi.org/10.1007/978-3-031-57327-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57327-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57326-2

  • Online ISBN: 978-3-031-57327-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics