Abstract
Swarms of robots can be thought of as networks, using the tools from telecommunications and network theory. A recent study designed sets of aquatic swarms of robots to clean the canals of Venice, interacting with computers on gondolas. The interaction between gondolas is one level higher in the hierarchy of communication. In other studies, pairwise communications between the robots in robotic swarms have been modeled via quantum computing. Here, we first apply quantum computing to the telecommunication-based model of an aquatic robotic swarm. Then, we use multilayer networks to model interactions within the overall system. Finally, we apply quantum entanglement to formalize the interaction and synchronization between “heads” of the swarms, that is, between gondolas. Our study can foster new strategies for search-and-rescue robotic-swarm missions, strengthening the connection between different areas of research in physics and engineering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is the application of the codes in https://github.com/medusamedusa/10_little_ants to the considered case.
References
Atchade-Adelomou, P., Alonso-Linaje, P., Albo-Canals, J., Casado-Fauli, D.: qRobot: a quantum computing approach in mobile robot order picking and batching problem solver optimization. Algorithms 14 (2021)
Biedrzycki, R., Arabas, J., Warchulski, E.: A version of NL-SHADE-RSP algorithm with midpoint for CEC 2022 single objective bound constrained problems. In: IEEE, Padua, Italy (2022)
Boccaletti, S., Bianconi, G., Criado, R., Genio, C.: The structure and dynamics of multilayer networks. Phys. Rep. (2014)
De Domenico, M., Granell, C., Porter, M., Arenas, A.: The physics of spreading processes in multilayer networks. Nat. Phys. (2016)
De Rango, F., Palmieri, N., Yang, X.S., et al.: Swarm robotics in wireless distributed protocol design for coordinating robots involved in cooperative tasks. Soft. Comput. 7(4), 4251–4266 (2018)
Dong, D., Chen, C., Li, H., Tarn, T.: Quantum reinforcement learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 38, 1207–1220 (2008)
Fazio, P., Mehic, M., Voznak, M.: Effects of sampling frequency on node mobility prediction in dynamic networks: a spectral view. Digit. Commun. Netw. 9, 1009–1022 (2022)
Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013)
Granell, C., Gómez, S., Arenas, A.: Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E 90, 012808 (2014)
Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018)
Ivancevic, V.: Entangled swarm intelligence: quantum computation for swarm robotics. Math. Eng. Sci. Aerosp. 7, 441–451 (2016)
Koukam, A., Abbas-Turki, A., Hilaire, V., Ruichek, Y.: Towards a quantum modeling approach to reactive agents. In: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (2021)
Kwak, Y., Yun, W., Jung, S., Kim, J., Kim, J.: Introduction to quantum reinforcement learning: theory and PennyLane-based implementation. In: International Conference on Information and Communication Technology Convergence (ICTC) (2021)
Lamata, L., et al.: Quantum mechatronics. Electronics 10, 2483 (2021)
Mannone, M., Seidita, V., Chella, A.: Categories, quantum computing, and swarm robotics: a case study. Mathematics 3(372) (2022)
Mannone, M., Seidita, V., Chella, A.: Modeling and designing a robotic swarm: a quantum computing approach. Swarm Evol. Comput. 79(101297) (2023)
Mannone, M., Seidita, V., Chella, A.: The sound of swarm. Auditory description of robotic movements. ACM Trans. Hum.-Robot Interact. 12(4), 1–27 (in press)
Mannone, M., Seidita, V., Chella, A., Giacometti, A., Fazio, P.: Energy and SNR-aware robotic swarm coordination for aquatic cleaning operations. In: 97th IEEE Vehicular Technology Conference (VTC), Florence, Italy, pp. 1–7 (2023, in press)
Haselhoff, T., et al.: Complex Networks for Analyzing the Urban Acoustic Environment. EarthArXiV. https://eartharxiv.org/repository/view/5371/
Palmieri, N., Yang, X.S., De Rango, F., et al.: Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption. Neural Comput. Appl. 31, 263–286 (2019)
Srivastava, S.: Quantum Robotics: Applications of Quantum Computing in Robotic Science. Analytics Insight (2020). https://www.analyticsinsight.net/quantum-robotics-applications-quantum-computing-robotic-science/
Solé-Ribalta, A., Gómez, S., Arenas, A.: Congestion induced by the structure of multiplex networks. Phys. Rev. Lett. 116, 108701 (2016)
Stolze, J., Suter, D.: Quantum Computing: A Short Course from Theory to Experiment. Wiley, Hoboken (2004)
Tropea, M., Palmieri, N., De Rango, F.: Modeling the coordination of a multiple robots using nature inspired approaches. In: Cicirelli, F., Guerrieri, A., Pizzuti, C., Socievole, A., Spezzano, G., Vinci, A. (eds.) WIVACE 2019. CCIS, vol. 1200, pp. 124–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45016-8_13
Wichert, A.: Principles of Quantum Artificial Intelligence. World Scientific (2020)
Zhu, K., Jiang, M.: Quantum artificial fish swarm algorithm. In: Proceedings of the 8th World Congress on Intelligent Control and Automation (2010)
Bahadori, F., et al.: The sum secrecy rate of NOMA-enabled VLC network with the random-way point mobility model. In: Proceedings of the Third South American Colloquium on Visible Light Communications (SACVLC) (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mannone, M., Marwan, N., Seidita, V., Chella, A., Giacometti, A., Fazio, P. (2024). Entangled Gondolas. Design of Multi-layer Networks of Quantum-Driven Robotic Swarms. In: Villani, M., Cagnoni, S., Serra, R. (eds) Artificial Life and Evolutionary Computation. WIVACE 2023. Communications in Computer and Information Science, vol 1977. Springer, Cham. https://doi.org/10.1007/978-3-031-57430-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-57430-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57429-0
Online ISBN: 978-3-031-57430-6
eBook Packages: Computer ScienceComputer Science (R0)