Abstract
This article deals with a basic greedy algorithm which, element by element, is able to construct a feasible solution to a wide family of combinatorial optimization problems. The novelty is to guide the greedy algorithm by considering the elements of the problem by order of merit, following a social ranking method. Social rankings come from social choice theory. The method used in the present article, called lexicographic excellence, sorts individual elements on the basis of the performances of groups of elements. In order to validate our approach, we conduct a theoretical analysis on matroid optimization problems, followed by a thorough experimental study on the multi-dimensional knapsack and the maximum weight independent set problem, leading to promising results.
Supported by Agence Nationale de la Recherche (ANR), project THEMIS ANR-20-CE23-0018.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
\(\pi \) may change over time.
- 2.
The maximization version of the matroid problem is considered but the minimization version is totally equivalent.
- 3.
The lightest edge of a cycle is not necessarily unique.
- 4.
Our implementation is available at https://github.com/tambysatya/socialranking.
References
Algaba, E., Moretti, S., Rémila, E., Solal, P.: Lexicographic solutions for coalitional rankings. Soc. Choice Welfare 57(4), 817–849 (2021). https://doi.org/10.1007/s00355-021-01340-z
Banzhaf, J.F., III.: Weighted voting doesn’t work: a mathematical analysis. Rutgers L. Rev. 19, 317 (1964)
Béal, S., Ferrières, S., Solal, P.: A core-partition ranking solution to coalitional ranking problems. Group Decis. Negot. 32, 1–21 (2023)
Béal, S., Rémila, E., Solal, P.: Lexicographic solutions for coalitional rankings based on individual and collective performances. J. Math. Econ. 102, 102738 (2022)
Bernardi, G., Lucchetti, R., Moretti, S.: Ranking objects from a preference relation over their subsets. Soc. Choice Welfare 52(4), 589–606 (2019). https://doi.org/10.1007/s00355-018-1161-1
Brualdi, R.: Comments on bases in dependence structures. Bull. Aust. Math. Soc. 1(2), 161–167 (1969)
Brucker, P.: Scheduling Algorithms, 5th edn. Springer, Cham (2007)
Cacchiani, V., Iori, M., Locatelli, A., Martello, S.: Knapsack problems-an overview of recent advances. part ii: multiple, multidimensional, and quadratic knapsack problems. Comput. Oper. Res. 143, 105693 (2022)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2009)
Dreze, J.H., Greenberg, J.: Hedonic coalitions: optimality and stability. Econometrica: J. Econometric Soc., 987–1003 (1980)
Halldórsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)
Haret, A., Khani, H., Moretti, S., Ozturk, M.: Ceteris paribus majority for social ranking. In: 27th International Joint Conference on Artificial Intelligence (IJCAI-ECAI-18), Stockholm, Sweden, pp. 303–309 (2018).https://doi.org/10.24963/ijcai.2018/42, https://hal.archives-ouvertes.fr/hal-02103421
Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
Khani, H., Moretti, S., Ozturk, M.: An ordinal Banzhaf index for social ranking. In: 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Macao, China, pp. 378–384 (2019).https://doi.org/10.24963/ijcai.2019/54, https://hal.archives-ouvertes.fr/hal-02302304
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 5th edn. Springer, Cham (2012)
Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)
Moretti, S., Öztürk, M.: Some axiomatic and algorithmic perspectives on the social ranking problem. In: Rothe, J. (eds.) Algorithmic Decision Theory. Lecture Notes in Computer Science(), vol. 10576, pp. 166–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67504-6_12, https://hal.archives-ouvertes.fr/hal-02103398
Osman, I.H., Kelly, J.P. (eds.): Meta-Heuristics: Theory and Applications. Springer, New York (1996)
Oxley, J.: Matroid Theory. Oxford University Press, Oxford (2011)
Roughgarden, T.: Algorithms Illuminated (Part 3): Greedy Algorithms and Dynamic Programming. Soundlikeyourself Publishing, LLC, New York, NY (2019)
Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM (JACM) 23(3), 555–565 (1976)
Vazirani, V.V.: Approximation Algorithms. Springer, Cham (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tamby, S., Gourvès, L., Moretti, S. (2024). Greedy Heuristic Guided by Lexicographic Excellence. In: Stützle, T., Wagner, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2024. Lecture Notes in Computer Science, vol 14632. Springer, Cham. https://doi.org/10.1007/978-3-031-57712-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-57712-3_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57711-6
Online ISBN: 978-3-031-57712-3
eBook Packages: Computer ScienceComputer Science (R0)