Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Short Code-Based One-out-of-Many Proofs and Applications

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2024 (PKC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14602))

Included in the following conference series:

  • 282 Accesses

Abstract

In this work, we propose two novel succinct one-out-of-many proofs from coding theory, which can be seen as extensions of the Stern’s framework and Veron’s framework from proving knowledge of a preimage to proving knowledge of a preimage for one element in a set, respectively. The size of each proof is short and scales better with the size of the public set than the code-based accumulator in [35]. Based on our new constructions, we further present a logarithmic-size ring signature scheme and a logarithmic-size group signature scheme. Our schemes feature short signature sizes, especially our group signature. To our best knowledge, it is the most compact code-based group signature scheme so far. At 128-bit security level, our group signature size is about 144 KB for a group with \(2^{20}\) members while the group signature size of the previously most compact code-based group signature constructed by the above accumulator exceeds 3200 KB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A code-based group signature scheme. Des. Codes Crypt. 82, 469–493 (2017)

    Article  MathSciNet  Google Scholar 

  2. Assidi, H., Ayebie, E.B., Souidi, E.M.: An efficient code-based threshold ring signature scheme. J. Inf. Secur. Appl. 45, 52–60 (2019)

    Google Scholar 

  3. Ayebie, E.B., Souidi, E.M.: New code-based cryptographic accumulator and fully dynamic group signature. Des. Codes Crypt. 90(12), 2861–2891 (2022)

    Article  MathSciNet  Google Scholar 

  4. Barenghi, A., Biasse, J.F., Ngo, T., Persichetti, E., Santini, P.: Advanced signature functionalities from the code equivalence problem. Int. J. Comput. Math. Comput. Syst. Theory 7(2), 112–128 (2022)

    Article  MathSciNet  Google Scholar 

  5. Bettaieb, S., Bidoux, L., Blazy, O., Gaborit, P.: Zero-knowledge reparation of the véron and AGS code-based identification schemes. In: ISIT 2021, pp. 55–60. IEEE (2021). https://doi.org/10.1109/ISIT45174.2021.9517937

  6. Beullens, W., Katsumata, S., Pintore, F.: Calamari and falafl: Logarithmic (linkable) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_16

  7. Bidoux, L., Gaborit, P., Kulkarni, M., Sendrier, N.: Quasi-cyclic stern proof of knowledge. In: ISIT 2022, pp. 1459–1464. IEEE (2022). https://doi.org/10.1109/ISIT50566.2022.9834642

  8. Blazy, O., Gaborit, P., Mac, D.T.: A rank metric code-based group signature scheme. In: Wachter-Zeh, A., Bartz, H., Liva, G. (eds.) CBCrypto 2021. LNCS, vol. 13150, pp. 1–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-98365-9_1

  9. Branco, P., Mateus, P.: A code-based linkable ring signature scheme. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 203–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9_12

  10. Branco, P., Mateus, P.: A traceable ring signature scheme based on coding theory. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 387–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_21

    Chapter  Google Scholar 

  11. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_12

    Chapter  Google Scholar 

  12. Chen, L., Moody, D., Liu, Y.K.: Post-quantum cryptography round 4 submissions. NIST (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions

  13. Chou, T., et al.: Take your MEDS: digital signatures from matrix code equivalence. In: Mrabet, N.E., Feo, L.D., Duquesne, S. (eds.) AFRICACRYPT 2023. LNCS, vol. 14064, pp. 28–52. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37679-5_2

  14. Dinur, I., Nadler, N.: Multi-target attacks on the picnic signature scheme and related protocols. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 699–727. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_24

    Chapter  Google Scholar 

  15. Döttling, N.: Cryptography based on the Hardness of Decoding. Ph.D. thesis, Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss., 2014 (2014)

    Google Scholar 

  16. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_4

    Chapter  Google Scholar 

  17. Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: A provably secure group signature scheme from code-based assumptions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 260–285. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_12

    Chapter  Google Scholar 

  18. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 541–572. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_19

  19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-47721-7_12

  20. Gaborit, P., Schrek, J., Zémor, G.: Full cryptanalysis of the chen identification protocol. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 35–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_3

    Chapter  Google Scholar 

  21. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9

    Chapter  Google Scholar 

  22. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_40

    Chapter  Google Scholar 

  23. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) CCS 2018, pp. 525–537. ACM (2018). https://doi.org/10.1145/3243734.3243805

  24. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23

    Chapter  Google Scholar 

  25. Kelsey, J., Chang, S.J., Perlner, R.: Sha-3 derived functions: cshake, kmac, tuplehash, and parallelhash. NIST special publication 800, 185 (2016)

    Google Scholar 

  26. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013), https://doi.org/10.1007/978-3-642-36362-7_8

  27. Liu, X., Wang, L.P.: Short code-based one-out-of-many proofs and applications. Cryptology ePrint Archive, Paper 2024/093 (2024), https://eprint.iacr.org/2024/093, https://eprint.iacr.org/2024/093

  28. Lyubashevsky, V., Nguyen, N.K.: BLOOM: bimodal lattice one-out-of-many proofs and applications. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13794, pp. 95–125. Springer, Cham (2022), https://doi.org/10.1007/978-3-031-22972-5_4

  29. McEliece, R.J.: A public-key cryptosystem based on algebraic. Coding Thv 4244, 114–116 (1978)

    Google Scholar 

  30. Melchor, C.A., Cayrel, P.L., Gaborit, P., Laguillaumie, F.: A new efficient threshold ring signature scheme based on coding theory. IEEE Trans. Inf. Theory 57(7), 4833–4842 (2011)

    Article  MathSciNet  Google Scholar 

  31. Melchor, C.A., Gaborit, P., Schrek, J.: A new zero-knowledge code based identification scheme with reduced communication. In: ITW 2011. pp. 648–652. IEEE (2011), https://doi.org/10.1109/ITW.2011.6089577

  32. Meurer, A.: A coding-theoretic approach to cryptanalysis. Ph.D. thesis, Verlag nicht ermittelbar (2013)

    Google Scholar 

  33. Morozov, K., Roy, P.S., Sakurai, K.: On unconditionally binding code-based commitment schemes. In: IMCOM, p. 101. ACM (2017). https://doi.org/10.1145/3022227.3022327

  34. Morozov, K., Takagi, T.: Zero-knowledge protocols for the McEliece encryption. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 180–193. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3_14

    Chapter  Google Scholar 

  35. Nguyen, K., Tang, H., Wang, H., Zeng, N.: New code-based privacy-preserving cryptographic constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 25–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_2

    Chapter  Google Scholar 

  36. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the mceliece cryptosystem without random oracles. Des. Codes Crypt. 49, 289–305 (2008)

    Article  MathSciNet  Google Scholar 

  37. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_4

    Chapter  Google Scholar 

  38. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory 42(6), 1757–1768 (1996)

    Article  MathSciNet  Google Scholar 

  39. Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8, 57–69 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions that substantially improved the quality of this paper. This research was supported by the National Natural Science Foundation of China under Grant No. 62372446, the National Key Research and Development Program of China under Grant No. 2018YFA0704703 and the Key Research Program of the Chinese Academy of Sciences, Grant No. ZDRW-XX-2022-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Wang, LP. (2024). Short Code-Based One-out-of-Many Proofs and Applications. In: Tang, Q., Teague, V. (eds) Public-Key Cryptography – PKC 2024. PKC 2024. Lecture Notes in Computer Science, vol 14602. Springer, Cham. https://doi.org/10.1007/978-3-031-57722-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57722-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57721-5

  • Online ISBN: 978-3-031-57722-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics