Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stand-Up Indulgent Gathering on Lines for Myopic Luminous Robots

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2024)

Abstract

We consider a strong variant of the crash fault-tolerant gathering problem called stand-up indulgent gathering (SUIG), by robots endowed with limited visibility sensors and lights on line-shaped networks. In this problem, a group of mobile robots must eventually gather at a single location, not known beforehand, regardless of the occurrence of crashes. Differently from previous work that considered unlimited visibility, we assume that robots can observe nodes only within a certain fixed distance (that is, they are myopic), and emit a visible color from a fixed set (that is, they are luminous), without multiplicity detection. We consider algorithms depending on two parameters related to the initial configuration: \(M_{init}\), which denotes the number of nodes between two border nodes, and \(O_{init}\), which denotes the number of nodes hosting robots. Then, a border node is a node hosting one or more robots that cannot see other robots on at least one side. Our main contribution is to prove that, if \(M_{init}\) or \(O_{init}\) is odd, SUIG can be solved in the fully synchronous model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  Google Scholar 

  2. Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X.: Continuous vs. discrete asynchronous moves: a certified approach for mobile robots. In: Atig, M.F., Schwarzmann, A.A. (eds.) NETYS 2019. LNCS, vol. 11704, pp. 93–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31277-0_7

    Chapter  Google Scholar 

  3. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: Proceedings of IEEE 33rd International Conference on Distributed Computing Systems (ICDCS), pp. 337–346 (2013)

    Google Scholar 

  4. Bramas, Q., et al.: Stand-up indulgent gathering on lines for myopic luminous robots (2023). https://arxiv.org/abs/2312.12698

  5. Bramas, Q., Kamei, S., Lamani, A., Tixeuil, S.: Stand-up indulgent gathering on lines. In: Dolev, S., Schieber, B. (eds.) SSS 2023. LNCS, vol. 14310, pp. 451–465. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44274-2_34

    Chapter  Google Scholar 

  6. Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent rendezvous. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 45–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_4

    Chapter  Google Scholar 

  7. Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent gathering. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds.) ALGOSENSORS 2021. LNCS, vol. 12961, pp. 17–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89240-1_2

    Chapter  Google Scholar 

  8. Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent gathering. Theoret. Comput. Sci. 939, 63–77 (2023)

    Article  MathSciNet  Google Scholar 

  9. Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C. (ed.) SIROCCO 2014. LNCS, vol. 9439, pp. 313–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_22

    Chapter  Google Scholar 

  10. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certification. Inf. Process. Lett. 115(3), 447–452 (2015)

    Article  MathSciNet  Google Scholar 

  11. Défago, X., Potop-Butucaru, M., Raipin-Parvédy, P.: Self-stabilizing gathering of mobile robots under crash or byzantine faults. Distrib. Comput. 33, 393–421 (2020)

    Article  MathSciNet  Google Scholar 

  12. Défago, X., Potop-Butucaru, M., Tixeuil, S.: Fault-tolerant mobile robots. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing. LNCS, vol. 11340, pp. 234–251. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_10

    Chapter  Google Scholar 

  13. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities, Current Researching Moving and Computing. LNCS, vol. 11340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7

  14. Kamei, S., Lamani, A., Ooshita, F.: Asynchronous ring gathering by oblivious robots with limited vision. In: Proceedings of IEEE 33rd International Symposium on Reliable Distributed Systems Workshops (SRDSW), pp. 46–49 (2014)

    Google Scholar 

  15. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S., Wada, K.: Gathering on rings for myopic asynchronous robots with lights. In: Proceedings of 23rd International Conference on Principles of Distributed Systems (OPODIS), vol. 27 (2019)

    Google Scholar 

  16. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoret. Comput. Sci. 390(1), 27–39 (2008)

    Article  MathSciNet  Google Scholar 

  17. Ooshita, F., Tixeuil, S.: Ring exploration with myopic luminous robots. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 301–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_20

    Chapter  Google Scholar 

  18. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayaka Kamei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bramas, Q. et al. (2024). Stand-Up Indulgent Gathering on Lines for Myopic Luminous Robots. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-031-57853-3_10

Download citation

Publish with us

Policies and ethics