Abstract
We consider a strong variant of the crash fault-tolerant gathering problem called stand-up indulgent gathering (SUIG), by robots endowed with limited visibility sensors and lights on line-shaped networks. In this problem, a group of mobile robots must eventually gather at a single location, not known beforehand, regardless of the occurrence of crashes. Differently from previous work that considered unlimited visibility, we assume that robots can observe nodes only within a certain fixed distance (that is, they are myopic), and emit a visible color from a fixed set (that is, they are luminous), without multiplicity detection. We consider algorithms depending on two parameters related to the initial configuration: \(M_{init}\), which denotes the number of nodes between two border nodes, and \(O_{init}\), which denotes the number of nodes hosting robots. Then, a border node is a node hosting one or more robots that cannot see other robots on at least one side. Our main contribution is to prove that, if \(M_{init}\) or \(O_{init}\) is odd, SUIG can be solved in the fully synchronous model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)
Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X.: Continuous vs. discrete asynchronous moves: a certified approach for mobile robots. In: Atig, M.F., Schwarzmann, A.A. (eds.) NETYS 2019. LNCS, vol. 11704, pp. 93–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31277-0_7
Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: Proceedings of IEEE 33rd International Conference on Distributed Computing Systems (ICDCS), pp. 337–346 (2013)
Bramas, Q., et al.: Stand-up indulgent gathering on lines for myopic luminous robots (2023). https://arxiv.org/abs/2312.12698
Bramas, Q., Kamei, S., Lamani, A., Tixeuil, S.: Stand-up indulgent gathering on lines. In: Dolev, S., Schieber, B. (eds.) SSS 2023. LNCS, vol. 14310, pp. 451–465. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44274-2_34
Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent rendezvous. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 45–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_4
Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent gathering. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds.) ALGOSENSORS 2021. LNCS, vol. 12961, pp. 17–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89240-1_2
Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent gathering. Theoret. Comput. Sci. 939, 63–77 (2023)
Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C. (ed.) SIROCCO 2014. LNCS, vol. 9439, pp. 313–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_22
Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certification. Inf. Process. Lett. 115(3), 447–452 (2015)
Défago, X., Potop-Butucaru, M., Raipin-Parvédy, P.: Self-stabilizing gathering of mobile robots under crash or byzantine faults. Distrib. Comput. 33, 393–421 (2020)
Défago, X., Potop-Butucaru, M., Tixeuil, S.: Fault-tolerant mobile robots. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing. LNCS, vol. 11340, pp. 234–251. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_10
Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities, Current Researching Moving and Computing. LNCS, vol. 11340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7
Kamei, S., Lamani, A., Ooshita, F.: Asynchronous ring gathering by oblivious robots with limited vision. In: Proceedings of IEEE 33rd International Symposium on Reliable Distributed Systems Workshops (SRDSW), pp. 46–49 (2014)
Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S., Wada, K.: Gathering on rings for myopic asynchronous robots with lights. In: Proceedings of 23rd International Conference on Principles of Distributed Systems (OPODIS), vol. 27 (2019)
Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoret. Comput. Sci. 390(1), 27–39 (2008)
Ooshita, F., Tixeuil, S.: Ring exploration with myopic luminous robots. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 301–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_20
Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bramas, Q. et al. (2024). Stand-Up Indulgent Gathering on Lines for Myopic Luminous Robots. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-031-57853-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-57853-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57852-6
Online ISBN: 978-3-031-57853-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)