Abstract
Trust serves as a cornerstone for decision-making process across diverse contexts, prompting extensive exploration in various research domains. Among the pivotal dimensions of trust, the relational trust has a particular significance. This paper introduces a fuzzy-based system for evaluating relational trust considering three key parameters: Influence (If), Importance (Ip) and Similarity (Sm). The proposed system is evaluated through computer simulations. The simulation results show a positive correlation between If, Ip and Sm parameters with the Relational Trust (RT). So, the increase of these parameters results in the increase of RT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Edelman: Edelman trust barometer 2023, January 2023. https://www.edelman.com/trust/2023/trust-barometer. accessed Jan 2024
Ziewitz, M.: Governing algorithms. Sci. Technol. Hum. Values 41(1), 16–30 (2016)
Heponiemi, T., Jormanainen, V., Leemann, L., Manderbacka, K., Aalto, A., Hyppnen, H.: Digital divide in perceived benefits of online health care and social welfare services: national cross-sectional survey study. J. Med. Internet Res. 22(7), e17616, 1–12 (2020)
Chen, N., Cho, D.S.-Y.: A blockchain based autonomous decentralized online social network, pp. 186–190 (2021)
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52:138–52:160 (2018)
Zhu, L., Xu, X., Lu, Q., Governatori, G., Whittle, J.: AI and ethics - operationalising responsible AI. arXiv, abs/2105.08867 (2021)
Frank, R.D., Chen, Z., Crawford, E., Suzuka, K., Yakel, E.: Trust in qualitative data repositories. Proc. Assoc. Inf. Sci. Technol. 54(1), 102–111 (2017)
Jayasinghe, U., Lee, G., Um, T.-W., Shi, Q.: Machine learning based trust computational model for IoT services. IEEE Trans. Sustain. Comput. 4(1), 39–52 (2019)
Schultz, C.D.: A trust framework model for situational contexts. pp. 1–7 (2006)
Cho, J.-H., Chan, K., Adali, S.: A survey on trust modeling. ACM Comput. Surv. (CSUR) 48(2), 1–40 (2015)
Lee, C.-C.: Fuzzy logic control systems: fuzzy logic controller - part i. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)
Mendel, J.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Higashi, S., Ampririt, P., Qafzezi, E., Ikeda, M., Matsuo, K., Barolli, L. (2024). Design and Implementation of a Fuzzy-Based System for Assessment of Relational Trust. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-031-57916-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-57916-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57915-8
Online ISBN: 978-3-031-57916-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)